在STM32上实现嵌入式人工智能应用

目录

  1. 引言
  2. 环境准备
  3. 嵌入式人工智能应用基础
  4. 代码实现:实现嵌入式人工智能应用 4.1 数据采集模块 4.2 数据处理与推理模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:人工智能与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

嵌入式人工智能应用通过STM32嵌入式系统结合传感器、执行器、通信模块和人工智能算法,实现对数据的实时监控、自动控制和智能推理。本文将详细介绍如何在STM32系统中实现一个嵌入式人工智能应用,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F7系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、光照传感器、摄像头模块等
  4. 执行器:如电机驱动器、继电器模块等
  5. 通信模块:如Wi-Fi模块、蓝牙模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS
  4. AI框架:TensorFlow Lite for Microcontrollers

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 下载并安装TensorFlow Lite for Microcontrollers
  4. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  5. 安装必要的库和驱动程序

3. 嵌入式人工智能应用基础

控制系统架构

嵌入式人工智能应用由以下部分组成:

  1. 数据采集模块:用于采集环境数据和图像数据
  2. 数据处理与推理模块:对采集的数据进行预处理,并使用AI模型进行推理
  3. 通信与网络系统:实现数据与服务器或其他设备的通信
  4. 显示系统:用于显示推理结果和系统状态
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过传感器和摄像头采集环境数据和图像数据,并使用AI模型进行实时推理,显示结果在OLED显示屏上。系统通过数据处理和通信模块,实现对数据的智能分析和推理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现嵌入式人工智能应用

4.1 数据采集模块

配置摄像头模块

使用STM32CubeMX配置I2C和DVP接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C和DVP引脚,设置为相应模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "camera.h"

I2C_HandleTypeDef hi2c1;
DCMI_HandleTypeDef hdcmi;

void I2C1_Init(void) {
    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = 0;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    HAL_I2C_Init(&hi2c1);
}

void DCMI_Init(void) {
    hdcmi.Instance = DCMI;
    hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
    hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
    hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_LOW;
    hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
    hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
    hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
    HAL_DCMI_Init(&hdcmi);
}

void Camera_Init(void) {
    I2C1_Init();
    DCMI_Init();
    CAMERA_Init();
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    Camera_Init();

    while (1) {
        CAMERA_Snapshot();
        HAL_Delay(1000);
    }
}

4.2 数据处理与推理模块

配置TensorFlow Lite for Microcontrollers

下载并安装TensorFlow Lite for Microcontrollers库:

  1. 下载TensorFlow Lite for Microcontrollers库并添加到项目中。
  2. 配置项目以使用TensorFlow Lite for Microcontrollers库。

代码实现:

#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/micro/micro_time.h"
#include "tensorflow/lite/micro/simple_tensor_allocator.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"

// 创建TensorFlow Lite micro的相关对象
namespace {
  tflite::MicroErrorReporter micro_error_reporter;
  tflite::ErrorReporter* error_reporter = &micro_error_reporter;
  const tflite::Model* model = nullptr;
  tflite::MicroInterpreter* interpreter = nullptr;
  TfLiteTensor* input = nullptr;
  TfLiteTensor* output = nullptr;

  // 模型缓冲区
  constexpr int kModelArenaSize = 10240;
  uint8_t model_arena[kModelArenaSize];
  constexpr int kTensorArenaSize = 81920;
  uint8_t tensor_arena[kTensorArenaSize];
}

void AI_Init(const unsigned char* model_data) {
  model = tflite::GetModel(model_data);
  if (model->version() != TFLITE_SCHEMA_VERSION) {
    error_reporter->Report("Model provided is schema version %d not equal "
                           "to supported version %d.",
                           model->version(), TFLITE_SCHEMA_VERSION);
    return;
  }

  static tflite::MicroMutableOpResolver<10> micro_op_resolver(error_reporter);
  tflite::ops::micro::RegisterAllOps(&micro_op_resolver);

  static tflite::MicroInterpreter static_interpreter(
      model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter);
  interpreter = &static_interpreter;

  interpreter->AllocateTensors();

  input = interpreter->input(0);
  output = interpreter->output(0);
}

void AI_RunInference(const uint8_t* image_data) {
  // 将图像数据加载到模型输入
  for (int i = 0; i < input->bytes; i++) {
    input->data.uint8[i] = image_data[i];
  }

  // 运行推理
  TfLiteStatus invoke_status = interpreter->Invoke();
  if (invoke_status != kTfLiteOk) {
    error_reporter->Report("Invoke failed on image data\n");
    return;
  }

  // 处理推理结果
  int8_t* results = output->data.int8;
  // 根据推理结果进行操作,例如控制继电器等
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    Camera_Init();
    AI_Init(g_model_data);  // 假设模型数据已被包含在项目中

    while (1) {
        CAMERA_Snapshot();
        AI_RunInference(CAMERA_GetImage());
        HAL_Delay(1000);
    }
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"

UART_HandleTypeDef huart2;

void UART2_Init(void) {
    huart2.Instance = USART2;
    huart2.Init.BaudRate = 115200;
    huart2.Init.WordLength = UART_WORDLENGTH_8B;
    huart2.Init.StopBits = UART_STOPBITS_1;
    huart2.Init.Parity = UART_PARITY_NONE;
    huart2.Init.Mode = UART_MODE_TX_RX;
    huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart2.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart2);
}

void Send_AI_Data_To_Server(const uint8_t* results) {
    char buffer[128];
    sprintf(buffer, "Results: %d, %d, %d", results[0], results[1], results[2]);
    HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART2_Init();
    Camera_Init();
    AI_Init(g_model_data);

    while (1) {
        CAMERA_Snapshot();
        AI_RunInference(CAMERA_GetImage());
        Send_AI_Data_To_Server(output->data.uint8);
        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将AI推理结果展示在OLED屏幕上:

void Display_AI_Data(const uint8_t* results) {
    char buffer[32];
    sprintf(buffer, "Result 1: %d", results[0]);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Result 2: %d", results[1]);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "Result 3: %d", results[2]);
    OLED_ShowString(0, 2, buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    Display_Init();
    Camera_Init();
    AI_Init(g_model_data);

    while (1) {
        CAMERA_Snapshot();
        AI_RunInference(CAMERA_GetImage());
        Display_AI_Data(output->data.uint8);
        HAL_Delay(1000);
    }
}

5. 应用场景:人工智能与优化

智能家居监控

嵌入式人工智能应用可以用于智能家居监控,通过摄像头实时监测家庭环境,并根据AI模型分析结果进行报警或控制家电设备。

机器视觉

嵌入式人工智能应用可以用于机器视觉,通过摄像头采集图像数据,并使用AI模型进行目标识别和跟踪。

智能机器人

嵌入式人工智能应用可以用于智能机器人,通过摄像头和传感器采集环境数据,并使用AI模型进行路径规划和决策。

物联网设备

嵌入式人工智能应用可以用于物联网设备,通过实时采集数据并进行智能分析,实现自动化控制和优化。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

模型加载失败

确保模型文件格式正确,路径正确,并且内存分配充足。

解决方案:检查模型文件的路径和格式,确保其与代码中的配置匹配。增加内存分配空间,确保能够加载模型。

推理速度慢

优化AI模型,减少模型参数和计算复杂度,提高推理速度。

解决方案:使用模型剪枝和量化技术,减少模型参数和计算复杂度。选择适合嵌入式设备的轻量级模型,提高推理速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行环境状态的预测和优化。

建议:增加更多传感器,如空气质量传感器、温湿度传感器等。使用云端平台进行数据分析和存储,提供更全面的环境监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时环境参数图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的管理和控制。

建议:使用数据分析技术分析数据,提供个性化的控制建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现嵌入式人工智能应用,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的嵌入式人工智能应用。

相关推荐
冰蓝蓝4 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界12 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck1 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409661 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
善 .2 小时前
单片机的内存是指RAM还是ROM
单片机·嵌入式硬件
超级码农ProMax2 小时前
STM32——“SPI Flash”
stm32·单片机·嵌入式硬件
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
程序猿阿伟2 小时前
《Java 优化秘籍:计算密集型 AI 任务加速指南》
java·开发语言·人工智能