深度学习系列70:模型部署torchserve

1. 流程说明

ts文件夹下,

从launcher.py进入,执行jar文件。

入口为model_server.py的start()函数。内容包含:

  1. 读取args,创建pid文件

  2. 找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件

  3. 根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket_type,执行model_service_worker.py,创建TorchModelServiceWorker类,并执行run_server方法。run_server不断执行handle_connection方法,handle_connection不断执行predict(cmd为I时)或者load_model(cmd为L时)任务。

  4. load_model可以返回service对象,而service可以执行predict函数。如果handler中间包含冒号,则用后面的function作为_entry_point,否则默认用handle函数作为_entry_point。

  5. service的定义如下。其中manifest是一个字典,记录在MAR包里面的MAR_INF/MANIFEST.json中,包含modelName,serializedFile,handler,modelVersion等信息。这些信息也是modelArchiver打包模型时需要的内容。

    class Service(object):
    """
    Wrapper for custom entry_point
    """

    复制代码
     def __init__(
         self,
         model_name,
         model_dir,
         manifest,
         entry_point,
         gpu,
         batch_size,
         limit_max_image_pixels=True,
         metrics_cache=None,
     ):
  6. 接下来看一下predict函数。首先是调用retrieve_data_for_inference方法获取input_batch,其格式为{parameter["name"]: parameter["value"]}。然后是调用ret = self._entry_point(input_batch, self.context),这里的_entry_point就是我们自己定义的handler.handle方法。默认的handle方法执行三步:

    data_preprocess = self.preprocess(data)
    output = self.inference(data_preprocess)
    output = self.postprocess(output)

2. 运行

  1. 首先安装java,然后pip install torchserve torch-model-archiver

  2. 接着将模型和参数打包:torch-model-archiver --model-name test --version 1.0 --serialized-file test.torchscript.pt --handler handler_test.py --export-path model_store

  3. 启动服务torchserve --start --ncs --model-store model_store --models test.mar --disable-token-auth --ts-config config.properties

  4. 停止服务torchserve --stop

  5. 调用:

    res = requests.post("http://127.0.0.1:8080/predictions/test",files = {"data":data})

相关推荐
陈纬度啊15 分钟前
自动驾驶ROS2应用技术详解
人工智能·自动驾驶·unix
开开心心_Every42 分钟前
全能视频处理工具介绍说明
开发语言·人工智能·django·pdf·flask·c#·音视频
xunberg1 小时前
AI Agent 实战:将 Node-RED 创建的 MCP 设备服务接入 Dify
人工智能·mcp
江瀚视野1 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售
KaneLogger1 小时前
AI模型与产品推荐清单20250709版
人工智能·程序员·开源
中电金信1 小时前
中电金信 :十问高质量数据集:金融大模型价值重塑有“据”可循
人工智能·金融
吕永强1 小时前
算法化资本——智能投顾技术重构金融生态的深度解析
人工智能·科普
新智元2 小时前
奥特曼:再也不和小扎说话!OpenAI 偷袭小扎马斯克,反手挖 4 核心员工
人工智能·openai
新智元2 小时前
CS 专业爆冷,失业率达艺术史 2 倍!年入千万只需 5 年,大学却在禁 Cursor
人工智能·openai
代码能跑就行管它可读性2 小时前
【论文复现】利用生成式AI进行选股和分配权重
人工智能·chatgpt