深度学习系列70:模型部署torchserve

1. 流程说明

ts文件夹下,

从launcher.py进入,执行jar文件。

入口为model_server.py的start()函数。内容包含:

  1. 读取args,创建pid文件

  2. 找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件

  3. 根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket_type,执行model_service_worker.py,创建TorchModelServiceWorker类,并执行run_server方法。run_server不断执行handle_connection方法,handle_connection不断执行predict(cmd为I时)或者load_model(cmd为L时)任务。

  4. load_model可以返回service对象,而service可以执行predict函数。如果handler中间包含冒号,则用后面的function作为_entry_point,否则默认用handle函数作为_entry_point。

  5. service的定义如下。其中manifest是一个字典,记录在MAR包里面的MAR_INF/MANIFEST.json中,包含modelName,serializedFile,handler,modelVersion等信息。这些信息也是modelArchiver打包模型时需要的内容。

    class Service(object):
    """
    Wrapper for custom entry_point
    """

    复制代码
     def __init__(
         self,
         model_name,
         model_dir,
         manifest,
         entry_point,
         gpu,
         batch_size,
         limit_max_image_pixels=True,
         metrics_cache=None,
     ):
  6. 接下来看一下predict函数。首先是调用retrieve_data_for_inference方法获取input_batch,其格式为{parameter["name"]: parameter["value"]}。然后是调用ret = self._entry_point(input_batch, self.context),这里的_entry_point就是我们自己定义的handler.handle方法。默认的handle方法执行三步:

    data_preprocess = self.preprocess(data)
    output = self.inference(data_preprocess)
    output = self.postprocess(output)

2. 运行

  1. 首先安装java,然后pip install torchserve torch-model-archiver

  2. 接着将模型和参数打包:torch-model-archiver --model-name test --version 1.0 --serialized-file test.torchscript.pt --handler handler_test.py --export-path model_store

  3. 启动服务torchserve --start --ncs --model-store model_store --models test.mar --disable-token-auth --ts-config config.properties

  4. 停止服务torchserve --stop

  5. 调用:

    res = requests.post("http://127.0.0.1:8080/predictions/test",files = {"data":data})

相关推荐
Pyeako几秒前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜29 分钟前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
不大姐姐AI智能体1 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全1 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch2 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
2501_940198692 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net
kuankeTech2 小时前
解决内外贸双轨制难题,外贸ERP智能引擎同步管理国内外合规与标准
大数据·人工智能·数据可视化·软件开发·erp
Hcoco_me2 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人