深度学习系列70:模型部署torchserve

1. 流程说明

ts文件夹下,

从launcher.py进入,执行jar文件。

入口为model_server.py的start()函数。内容包含:

  1. 读取args,创建pid文件

  2. 找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件

  3. 根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket_type,执行model_service_worker.py,创建TorchModelServiceWorker类,并执行run_server方法。run_server不断执行handle_connection方法,handle_connection不断执行predict(cmd为I时)或者load_model(cmd为L时)任务。

  4. load_model可以返回service对象,而service可以执行predict函数。如果handler中间包含冒号,则用后面的function作为_entry_point,否则默认用handle函数作为_entry_point。

  5. service的定义如下。其中manifest是一个字典,记录在MAR包里面的MAR_INF/MANIFEST.json中,包含modelName,serializedFile,handler,modelVersion等信息。这些信息也是modelArchiver打包模型时需要的内容。

    class Service(object):
    """
    Wrapper for custom entry_point
    """

    复制代码
     def __init__(
         self,
         model_name,
         model_dir,
         manifest,
         entry_point,
         gpu,
         batch_size,
         limit_max_image_pixels=True,
         metrics_cache=None,
     ):
  6. 接下来看一下predict函数。首先是调用retrieve_data_for_inference方法获取input_batch,其格式为{parameter["name"]: parameter["value"]}。然后是调用ret = self._entry_point(input_batch, self.context),这里的_entry_point就是我们自己定义的handler.handle方法。默认的handle方法执行三步:

    data_preprocess = self.preprocess(data)
    output = self.inference(data_preprocess)
    output = self.postprocess(output)

2. 运行

  1. 首先安装java,然后pip install torchserve torch-model-archiver

  2. 接着将模型和参数打包:torch-model-archiver --model-name test --version 1.0 --serialized-file test.torchscript.pt --handler handler_test.py --export-path model_store

  3. 启动服务torchserve --start --ncs --model-store model_store --models test.mar --disable-token-auth --ts-config config.properties

  4. 停止服务torchserve --stop

  5. 调用:

    res = requests.post("http://127.0.0.1:8080/predictions/test",files = {"data":data})

相关推荐
kisshuan123962 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits2 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅2 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
qq_356448373 小时前
机器学习基本概念与梯度下降
人工智能
水如烟3 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿3 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——3 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程4 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt