深度学习系列70:模型部署torchserve

1. 流程说明

ts文件夹下,

从launcher.py进入,执行jar文件。

入口为model_server.py的start()函数。内容包含:

  1. 读取args,创建pid文件

  2. 找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件

  3. 根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket_type,执行model_service_worker.py,创建TorchModelServiceWorker类,并执行run_server方法。run_server不断执行handle_connection方法,handle_connection不断执行predict(cmd为I时)或者load_model(cmd为L时)任务。

  4. load_model可以返回service对象,而service可以执行predict函数。如果handler中间包含冒号,则用后面的function作为_entry_point,否则默认用handle函数作为_entry_point。

  5. service的定义如下。其中manifest是一个字典,记录在MAR包里面的MAR_INF/MANIFEST.json中,包含modelName,serializedFile,handler,modelVersion等信息。这些信息也是modelArchiver打包模型时需要的内容。

    class Service(object):
    """
    Wrapper for custom entry_point
    """

    复制代码
     def __init__(
         self,
         model_name,
         model_dir,
         manifest,
         entry_point,
         gpu,
         batch_size,
         limit_max_image_pixels=True,
         metrics_cache=None,
     ):
  6. 接下来看一下predict函数。首先是调用retrieve_data_for_inference方法获取input_batch,其格式为{parameter["name"]: parameter["value"]}。然后是调用ret = self._entry_point(input_batch, self.context),这里的_entry_point就是我们自己定义的handler.handle方法。默认的handle方法执行三步:

    data_preprocess = self.preprocess(data)
    output = self.inference(data_preprocess)
    output = self.postprocess(output)

2. 运行

  1. 首先安装java,然后pip install torchserve torch-model-archiver

  2. 接着将模型和参数打包:torch-model-archiver --model-name test --version 1.0 --serialized-file test.torchscript.pt --handler handler_test.py --export-path model_store

  3. 启动服务torchserve --start --ncs --model-store model_store --models test.mar --disable-token-auth --ts-config config.properties

  4. 停止服务torchserve --stop

  5. 调用:

    res = requests.post("http://127.0.0.1:8080/predictions/test",files = {"data":data})

相关推荐
空中楼阁,梦幻泡影12 小时前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
Dev7z12 小时前
基于改进YOLOv5n与OpenVINO加速的课堂手机检测系统设计与实现
人工智能·yolo·openvino·手机检测·课堂手机检测
Elastic 中国社区官方博客12 小时前
Elastic 9.3:与数据对话、构建自定义 AI agents、实现全自动化
大数据·人工智能·elasticsearch·搜索引擎·ai·自动化·全文检索
启友玩AI12 小时前
方言守护者:基于启英泰伦CI-F162GS02J芯片的“能听懂乡音”的智能夜灯DIY全攻略
c语言·人工智能·嵌入式硬件·ai·语音识别·pcb工艺
档案宝档案管理12 小时前
企业档案管理系统:从“资料存放”到“数据资产”的升级
大数据·人工智能·档案·档案管理
wasp52012 小时前
Banana Slides 深度解析:AI Core 架构设计与 Prompt 工程实践
人工智能·prompt·bash
跨境卫士情报站12 小时前
用“渠道矩阵+内容节奏”把流量做成可控资产
大数据·人工智能·矩阵·产品运营·跨境电商·亚马逊
XX風12 小时前
4.1 spectral clusterig
人工智能·机器学习·支持向量机
连线Insight12 小时前
从“模型竞赛”到“数据为王”:WPS 365如何帮企业挖掘数据金矿?
人工智能·wps
云道轩13 小时前
在Rocky Linux 9.5上在线使用Docker安装LangFlow 1.7.3
人工智能·智能体·langflow