深度学习系列70:模型部署torchserve

1. 流程说明

ts文件夹下,

从launcher.py进入,执行jar文件。

入口为model_server.py的start()函数。内容包含:

  1. 读取args,创建pid文件

  2. 找到java,启动model-server.jar程序,同时读取log-config文件,TEMP文件夹地址,TS_CONFIG_FILE文件

  3. 根据cpu核数、gpu个数,启动多进程。每个进程有一个socket_name和socket_type,执行model_service_worker.py,创建TorchModelServiceWorker类,并执行run_server方法。run_server不断执行handle_connection方法,handle_connection不断执行predict(cmd为I时)或者load_model(cmd为L时)任务。

  4. load_model可以返回service对象,而service可以执行predict函数。如果handler中间包含冒号,则用后面的function作为_entry_point,否则默认用handle函数作为_entry_point。

  5. service的定义如下。其中manifest是一个字典,记录在MAR包里面的MAR_INF/MANIFEST.json中,包含modelName,serializedFile,handler,modelVersion等信息。这些信息也是modelArchiver打包模型时需要的内容。

    class Service(object):
    """
    Wrapper for custom entry_point
    """

    复制代码
     def __init__(
         self,
         model_name,
         model_dir,
         manifest,
         entry_point,
         gpu,
         batch_size,
         limit_max_image_pixels=True,
         metrics_cache=None,
     ):
  6. 接下来看一下predict函数。首先是调用retrieve_data_for_inference方法获取input_batch,其格式为{parameter["name"]: parameter["value"]}。然后是调用ret = self._entry_point(input_batch, self.context),这里的_entry_point就是我们自己定义的handler.handle方法。默认的handle方法执行三步:

    data_preprocess = self.preprocess(data)
    output = self.inference(data_preprocess)
    output = self.postprocess(output)

2. 运行

  1. 首先安装java,然后pip install torchserve torch-model-archiver

  2. 接着将模型和参数打包:torch-model-archiver --model-name test --version 1.0 --serialized-file test.torchscript.pt --handler handler_test.py --export-path model_store

  3. 启动服务torchserve --start --ncs --model-store model_store --models test.mar --disable-token-auth --ts-config config.properties

  4. 停止服务torchserve --stop

  5. 调用:

    res = requests.post("http://127.0.0.1:8080/predictions/test",files = {"data":data})

相关推荐
夏日的盒盒几秒前
CVPR2024迁移学习《Unified Language-driven Zero-shot Domain Adaptation》
人工智能·深度学习·机器学习
四川兔兔2 分钟前
Pytorch 卷积神经网络参数说明一
人工智能·pytorch·cnn
IT猿手3 分钟前
动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
人工智能·算法·机器学习·matlab·迁移学习·动态多目标进化算法·动态多目标优化算法
舒一笑14 分钟前
基础RAG实现,最佳入门选择(一)
人工智能
李元豪1 小时前
【行云流水AI笔记】根据上面泳道图,请问如果加入强化学习,在哪些模块添加比较好,返回添加后的泳道图。
人工智能·笔记
2501_915374351 小时前
LangChain开发智能问答(RAG)系统实战教程:从零构建知识驱动型AI助手
人工智能·langchain
AI设计小站1 小时前
AI 工具打造专业级 PPT 配图:从文字到视觉的高效转化指南
人工智能·信息可视化·powerpoint
新知图书2 小时前
OpenCV图像金字塔
人工智能·opencv·计算机视觉
Eric.Lee20212 小时前
数据集-目标检测系列- 狮子 数据集 lion >> DataBall
人工智能·目标检测·目标跟踪
yanmengying2 小时前
目标检测yolo算法
人工智能·yolo·目标检测