一、Flink 状态(State)简介
在流式计算中有些操作一次处理一个独立的事件(比如解析一个事件), 有些操作却需要记住多个事件的信息(比如窗口操作)。那些需要记住多个事件信息的操作就是有状态的。流式计算分为无状态计算和有状态计算两种情况。状态可以理解为:历史数据(中间结果)
二、大状态作业导致的问题
随着作业状态的持续膨胀,多个问题逐步显现,对作业的整体性能产生不利影响:
- 性能下降与作业反压:随着有状态算子状态的累积,I/O资源的瓶颈问题日益凸显,引发作业反压。这不仅增加了处理延迟,还导致吞吐量(TPS)降低。
- 资源利用效率低下:有状态算子的CPU资源常出现大量闲置,且随着状态规模的增长,资源浪费问题更加严重。
- 检查点与快照机制的时效性问题:状态规模的扩大使得检查点和快照过程更易超时,这不仅增加了作业重启后追赶数据的时间成本,也对端到端的 Exactly-once 语义的实现带来了额外延迟。
- 启动与扩缩容过程缓慢:在作业启动和扩缩容过程中,每个算子节点需从全量数据中恢复并重建本地数据库,这一过程的时间消耗与状态规模成正比。拥有大状态作业的状态加载往往成为启动和扩缩容执行速度的瓶颈,进而延长业务中断时间。
三、大状态作业诊断调优整体思路
在处理 Flink 作业时,如下这三类问题通常由大规模状态的管理和维护所引起:运行时性能减缓、检查点或快照超时问题以及作业启动和扩缩容过程缓慢。为了优化这些大状态作业,建议遵循以下步骤:
-
识别作业瓶颈:通过诊断工具结合具体业务产出情况,对作业目前的运行情况进行更为深入的了解,进而确定作业的性能瓶颈是否与状态管理有关。
-
采用更新的引擎版本:Flink在状态模块持续优化,最新版本的引擎通常具有更高的性能。阿里云实时计算的Flink企业版------Ververica Runtime (VVR),与 Apache Flink 完全兼容,并内置了专为流计算优化的状态存储 Gemini。Gemini 针对状态访问进行了设计,有效提升了性能、检查点和作业恢复能力,且参数自适应,无需手动配置。结合实时计算产品,VVR 为用户提供了企业级的优化体验,确保性能达到最佳。在进行性能调优前,请确保已采用最新版引擎和相关配置。
-
针对不同问题采取特定调优策略:
(1)运行时性能下降(作业反压):在这种情况下,调优应遵循以下顺序:首先优化SQL层,其次基于TTL(生存时间)减少状态数据,然后调整内存和并发资源以降低磁盘读取频率。
(2)检查点或快照超时:在处理此类问题时,应先优化作业的运行时性能以减轻反压,接着优化同步阶段的性能,然后调整并发资源以降低单个并发任务的状态量,最后考虑使用原生快照功能来提高效率。
(3)作业启动和扩缩容缓慢:如果本地磁盘资源充足,可以优先考虑启用状态本地恢复(Local Recovery)功能。同时,利用 Gemini 的懒加载特性和延迟剪裁技术,可以有效提升作业的启动和扩缩容速度。
四、Flink Datastream 作业大状态导致反压的调优原理与方法
4.1 基本原理
Flink 支持 Operator State 和 Keyed State 两种状态,其中大状态问题通常由 Keyed State 引起。Flink Datastream API 支持通过显式的ValueState
、ListState
、MapState
等状态接口来维护 Keyed State,以及为其设置过期时间
4.2 问题诊断方法
在Flink作业遭遇性能瓶颈时,系统往往表现出明显的反压现象。这种反压可能由多种因素引起,但主要的原因之一是作业状态规模的持续膨胀,直至超出内存限制。此时,状态存储引擎不得不将部分不频繁使用的状态数据移至磁盘,而磁盘与内存在数据存取速度上的巨大差异,使得磁盘 IO 操作成为数据处理效率的瓶颈(RocksDB大状态)。尤其在 Flink 的计算过程中,如果算子频繁地从磁盘读取状态数据,将显著增加作业的延迟,降低整体处理速度,成为性能问题的根源。
4.3 调优方法
4.3.1 反复确认业务逻辑,合理设计状态
在使用Flink进行状态管理时,首先需要审视业务逻辑,确保只存储必要的数据,避免产生不必要的状态信息。合理设计状态结构和存储内容是控制状态增长的关键所在。仅存储业务所需的最小化状态信息,有利于避免状态的无限增长。
设置合理状态生命周期减小状态大小
Flink 提供了丰富的状态时间特性,如 ValueStateDescriptor 的 setTTL 方法,可以设置状态的生命周期,确保状态在一定时间后自动过期并被清除。同时,开发者也可以直接调用 clear() 或 remove() 方法,显式删除不再需要的状态条目。合理利用这些特性,可以有效控制状态规模。
4.3.2 使用定时器进行状态清理
除了依赖状态的时间特性,还可以利用 Flink 的定时器机制,定期触发状态的清理操作。通过设置合理的定时器触发时间,可以确保过期状态及时被清理,避免状态无限增长。这种主动清理状态的方法,可以更精细地控制状态的生命周期。
4.3.3 进行必要的监控与日志输出,同时定期分析状态文件
在状态管理过程中,需要持续监控状态大小和状态后端的性能指标,及时发现异常情况。同时,记录详细的日志信息,有助于在出现问题时快速定位和解决。除此之外,定期分析状态文件,也能够提供系统运行的历史数据,有助于识别作业模式和预测可能的风险点,为进一步优化状态管理提供依据。
4.3.4 尽可能减少读盘
为了提升系统性能,我们可以通过减少磁盘读取次数并优化内存使用来实现。以下是针对不同情况的具体策略:
(1)优化内存分配:在保证系统总资源不受影响的前提下,我们可以重新分配内存资源,将更多的内存分配给托管内存(Managed Memory)。这样做可以有效提升内存的命中率,从而减少对磁盘的依赖。具体操作时,应确保其他内存资源充足,以免影响系统的其他部分。
(2)细粒度资源配置:在进行资源配置时,应优先考虑增加内存资源。通过为存储引擎分配更多的托管内存,我们可以进一步提高内存命中率,减少对磁盘的读取需求。这种方法在细粒度的资源管理中尤为重要,因为它允许我们更精确地控制资源分配,以达到最佳的性能表现。
(3)提高并发处理能力:通过增加并发处理的数量,我们可以降低单个并发任务的状态量,从而减少需要写入磁盘的数据量。这种方法可以有效地减少磁盘 I/O 操作,提高整体的数据处理效率
参考文章: