深度学习高效性网络

为了减轻Transformer笨重的计算成本,一系列工作重点开发了高效的Vision Transformer,如Swin Transformer、PVT、Twins、CoAtNet和MobileViT。

1、字节TRT-ViT

兼具CNN的速度、Transformer精度的模型

TRT-ViT(Transformer-based Vision Transformer)是一个结合了Transformer和ViT的模型,旨在同时利用CNN和Transformer的优点,以实现更高的性能和效率。TRT-ViT将CNN作为ViT的一部分,从而实现了在速度和精度之间的平衡。

TRT-ViT的核心思想是将CNN的局部性和Transformer的全局性相结合。具体来说,TRT-ViT使用CNN提取图像的局部特征,然后将这些特征作为Transformer的输入。这样,模型可以同时捕捉图像的局部信息和全局信息,从而实现更好的性能。

TRT-ViT的另一个关键特点是其高效性。由于它结合了CNN和Transformer的优点,因此在训练和推理过程中具有较高的效率。此外,TRT-ViT还采用了一些技术来减少计算量和内存消耗,以实现更高效的模型。

在实际应用中,TRT-ViT可以广泛应用于计算机视觉任务,如图像分类、目标检测和语义分割等。通过将CNN和Transformer相结合,TRT-ViT可以在速度和精度之间取得更好的平衡,从而满足不同任务的需求。

2、EfficientFormer

EfficientFormer: Vision Transformers at MobileNet Speed,在IPhone12的推理延迟仅为1.6 ms

3、AdaptFormer

概念简单但有效的框架AdaptFormer,用于有效地将预训练的视觉Transformer(ViT)主干迁移到可伸缩的视觉识别任务。通过引入AdaptMLP,本文的AdaptFormer能够调整轻量级模块,以生成适应多个下游任务的特征。

4、Auto-scaling Vision Transformers

As-ViT(Auto-scaling Vision Transformers),这是一个无需训练的 ViT 自动扩展框架,它能以高效且有原则的方式自动设计和扩展 ViT。

5、MSG-Transformer

面向高分辨率的ViT框架:华为、华中科技大学联合提出了一种全新的信使Token来实现灵活而高效的局部信息交互。在MSG-Transformer中,信使Token负责提取每一个局部区域的信息,并与其他信使token进行交换,然后将交换后的信息传递回对应的区域。利用信使token进行信息交换有极高的灵活度,在高分辨场景有很大的潜力。

MSG Transformer引入的MSG token对计算量和模型参数都影响不大,所以其和Swin Transformer一样其计算复杂度线性于图像大小。在ImageNet上,其模型效果和Swin接近,但其在CPU上速度较快。在COCO数据集上,基于Mask R-CNN模型,也可以和Swin模型取得类似的效果。此外,信使Token的机制在建模时间信息上也有着明显优势,相信该机制在未来Transformer结构设计中能够带来更多的启发。

相关推荐
泰迪智能科技0125 分钟前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手1 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20211 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight1 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说1 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu1 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦2 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot
audyxiao0012 小时前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
Jeremy_lf2 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型