深度学习高效性网络

为了减轻Transformer笨重的计算成本,一系列工作重点开发了高效的Vision Transformer,如Swin Transformer、PVT、Twins、CoAtNet和MobileViT。

1、字节TRT-ViT

兼具CNN的速度、Transformer精度的模型

TRT-ViT(Transformer-based Vision Transformer)是一个结合了Transformer和ViT的模型,旨在同时利用CNN和Transformer的优点,以实现更高的性能和效率。TRT-ViT将CNN作为ViT的一部分,从而实现了在速度和精度之间的平衡。

TRT-ViT的核心思想是将CNN的局部性和Transformer的全局性相结合。具体来说,TRT-ViT使用CNN提取图像的局部特征,然后将这些特征作为Transformer的输入。这样,模型可以同时捕捉图像的局部信息和全局信息,从而实现更好的性能。

TRT-ViT的另一个关键特点是其高效性。由于它结合了CNN和Transformer的优点,因此在训练和推理过程中具有较高的效率。此外,TRT-ViT还采用了一些技术来减少计算量和内存消耗,以实现更高效的模型。

在实际应用中,TRT-ViT可以广泛应用于计算机视觉任务,如图像分类、目标检测和语义分割等。通过将CNN和Transformer相结合,TRT-ViT可以在速度和精度之间取得更好的平衡,从而满足不同任务的需求。

2、EfficientFormer

EfficientFormer: Vision Transformers at MobileNet Speed,在IPhone12的推理延迟仅为1.6 ms

3、AdaptFormer

概念简单但有效的框架AdaptFormer,用于有效地将预训练的视觉Transformer(ViT)主干迁移到可伸缩的视觉识别任务。通过引入AdaptMLP,本文的AdaptFormer能够调整轻量级模块,以生成适应多个下游任务的特征。

4、Auto-scaling Vision Transformers

As-ViT(Auto-scaling Vision Transformers),这是一个无需训练的 ViT 自动扩展框架,它能以高效且有原则的方式自动设计和扩展 ViT。

5、MSG-Transformer

面向高分辨率的ViT框架:华为、华中科技大学联合提出了一种全新的信使Token来实现灵活而高效的局部信息交互。在MSG-Transformer中,信使Token负责提取每一个局部区域的信息,并与其他信使token进行交换,然后将交换后的信息传递回对应的区域。利用信使token进行信息交换有极高的灵活度,在高分辨场景有很大的潜力。

MSG Transformer引入的MSG token对计算量和模型参数都影响不大,所以其和Swin Transformer一样其计算复杂度线性于图像大小。在ImageNet上,其模型效果和Swin接近,但其在CPU上速度较快。在COCO数据集上,基于Mask R-CNN模型,也可以和Swin模型取得类似的效果。此外,信使Token的机制在建模时间信息上也有着明显优势,相信该机制在未来Transformer结构设计中能够带来更多的启发。

相关推荐
昨日之日200613 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper15 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号16 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha16 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云16 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊16 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint16 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨16 小时前
zotero扩容
人工智能·笔记
大数据张老师16 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI17 小时前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算