深度学习高效性网络

为了减轻Transformer笨重的计算成本,一系列工作重点开发了高效的Vision Transformer,如Swin Transformer、PVT、Twins、CoAtNet和MobileViT。

1、字节TRT-ViT

兼具CNN的速度、Transformer精度的模型

TRT-ViT(Transformer-based Vision Transformer)是一个结合了Transformer和ViT的模型,旨在同时利用CNN和Transformer的优点,以实现更高的性能和效率。TRT-ViT将CNN作为ViT的一部分,从而实现了在速度和精度之间的平衡。

TRT-ViT的核心思想是将CNN的局部性和Transformer的全局性相结合。具体来说,TRT-ViT使用CNN提取图像的局部特征,然后将这些特征作为Transformer的输入。这样,模型可以同时捕捉图像的局部信息和全局信息,从而实现更好的性能。

TRT-ViT的另一个关键特点是其高效性。由于它结合了CNN和Transformer的优点,因此在训练和推理过程中具有较高的效率。此外,TRT-ViT还采用了一些技术来减少计算量和内存消耗,以实现更高效的模型。

在实际应用中,TRT-ViT可以广泛应用于计算机视觉任务,如图像分类、目标检测和语义分割等。通过将CNN和Transformer相结合,TRT-ViT可以在速度和精度之间取得更好的平衡,从而满足不同任务的需求。

2、EfficientFormer

EfficientFormer: Vision Transformers at MobileNet Speed,在IPhone12的推理延迟仅为1.6 ms

3、AdaptFormer

概念简单但有效的框架AdaptFormer,用于有效地将预训练的视觉Transformer(ViT)主干迁移到可伸缩的视觉识别任务。通过引入AdaptMLP,本文的AdaptFormer能够调整轻量级模块,以生成适应多个下游任务的特征。

4、Auto-scaling Vision Transformers

As-ViT(Auto-scaling Vision Transformers),这是一个无需训练的 ViT 自动扩展框架,它能以高效且有原则的方式自动设计和扩展 ViT。

5、MSG-Transformer

面向高分辨率的ViT框架:华为、华中科技大学联合提出了一种全新的信使Token来实现灵活而高效的局部信息交互。在MSG-Transformer中,信使Token负责提取每一个局部区域的信息,并与其他信使token进行交换,然后将交换后的信息传递回对应的区域。利用信使token进行信息交换有极高的灵活度,在高分辨场景有很大的潜力。

MSG Transformer引入的MSG token对计算量和模型参数都影响不大,所以其和Swin Transformer一样其计算复杂度线性于图像大小。在ImageNet上,其模型效果和Swin接近,但其在CPU上速度较快。在COCO数据集上,基于Mask R-CNN模型,也可以和Swin模型取得类似的效果。此外,信使Token的机制在建模时间信息上也有着明显优势,相信该机制在未来Transformer结构设计中能够带来更多的启发。

相关推荐
mit6.82416 分钟前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub28 分钟前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI1 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
国产化创客1 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)1 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路1 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶
xier_ran1 小时前
Transformer:Decoder 中,Cross-Attention 所用的 K(Key)和 V(Value)矩阵,是如何从 Encoder 得到的
深度学习·矩阵·transformer
2401_841495642 小时前
【自然语言处理】轻量版生成式语言模型GPT
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer