pt模型转onnx模型,onnx模型转engine模型,pt模型转engine模型详细教程(TensorRT,jetpack)

背景

背景是需要在nvidia jetpack4.5.1的arm64设备上跑yolov8,用TensorRT加速,需要用*.engine格式的模型,但是手头上的是pt格式模型,众所周知小板子的内存都很小,连安装ultralytics依赖库的容量都没有,所以我想到在windows系统上先把模型转好,然后再直接放在板子上用。

下载ultralytics yolov8

https://github.com/ultralytics/ultralytics

找到exporter.py

我以为是直接在这个exporter.py上直接改参数来转模型,找了半天找不到,然后直接运行这个python文件也是失败报错,后来才看到这个exporter.py上面有教如何使用

  • 安装依赖库
bash 复制代码
pip install "ultralytics[export]

等待安装好,这需要很长时间

然后不是直接运行这个exporter.py文件,而是像提示里面一样,创造一个py文件,在文件里面复制这几行然后改参数就行了

python 复制代码
    from ultralytics import YOLO
    model = YOLO('yolov8n.pt')
    results = model.export(format='onnx')

结果我运行了会报错找不到gpu

bash 复制代码
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"
AssertionError: export running on CPU but must be on GPU, i.e. use 'device=0

查了是需要指定gpu,然后我尝试在python里指定gpu,都还是报这个错,突然看到有提示需要device=0,我想这是加在哪里的呢,后来发现是在下面那个cli命令行加

尝试一步到位转成engine模型

bash 复制代码
yolo mode=export model=Gap.pt format=engine

报错assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"

bash 复制代码
assert self.im.device.type != 'cpu', "export running on CPU but must be on GPU, i.e. use 'device=0'"

解决办法就是在后面加一个device=0

bash 复制代码
yolo mode=export model=Gap.pt format=engine device=0  

把模型放在小板子上用结果报错ERROR: coreReadArchive.cpp (31) - Serialization Error in verifyHeader: 0 (Magic tag does not match)

查了下,我真是慌了,意思是编译engine时候的使用的tensorrt版本与使用trt推理时候的tensorrt版本不一致,需要一致才行

,排查下各自是什么版本

  • linux查tensorRT版本
bash 复制代码
ldd 可执行文件

可以看到生成可执行文件的tensorRT是7版本

这个命令行也可以查询到

bash 复制代码
dpkg -l | grep TensorRT

能看到是7.1.3版本的tensorRT

  • windows查tensorRT版本
python 复制代码
import tensorrt as trt
print(f'TensorRT version: {trt.__version__}')

可以看到我在编译engine时候的使用的tensorrt版本是8.4,版本不匹配,所以trt推理失败。

然后我寻思arm64环境是不方便更改的,那我就降低windows端的tensorRT版本,我就去nvidia官网下载(https://developer.nvidia.com/tensorrt/download)结果,官网都不提供7.1版本的tensorRT下载了,一下子又不知道该怎么解决了。

我突然想到既然直接使用engine不行,那我用生成出来的onnx模型再在arm64上转成engine行不行

aarch64上onnx转engine模型

找到你本机上的trt转模型可执行文件

bash 复制代码
sudo find / -name trtexec

复制到你的模型文件夹

bash 复制代码
./trtexec --onnx=/home/adlink/wjp/YoloV8-TensorRT-Jetson_Nano-main/models/yolov8n.onnx  --saveEngine=yolov8n.engine --fp16=fp32

结果还是报错volume mismatch,Input dimensions [1,33,8400] have volume 277200 and output dimensions [1,4,16,8400] have volume 537600.

仿佛又没有办法解决了,难道非要统一版本,但是这上面尝试过已知道是非常困难的,我尝试用其他办法,后来尝试更换参数,发现是opset版本太高的问题,好像默认是17,而aarch64上的版本很低,需要在yolo转pt为onnx的步骤加指定opset的参数

bash 复制代码
yolo export model=yolov8s.pt format=onnx opset=11 simplify=True

再把生成的onnx文件用trtexec转

bash 复制代码
./trtexec --onnx=/home/adlink/wjp/YoloV8-TensorRT-Jetson_Nano-main/models/yolov8n.onnx  --saveEngine=yolov8n.engine --fp16=fp32

就转成功了,跑模型也没问题!

特别说明下

bash 复制代码
[TRT] Some tactics do not have sufficient workspace memory to run. Increasing workspace size may increase performance, please check verbose output.

中间会在这个步骤停很长时间,这个不是报错,静静等待就好了,过一会就能成功转换onnx为engine模型了

相关推荐
一代土怪10 小时前
django中设置中国时区
python·django
tjjucheng10 小时前
小程序定制开发哪家有成熟系统
python
万行10 小时前
差速两轮机器人位移与航向角增量计算
人工智能·python·算法·机器人
叫我:松哥11 小时前
基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术
大数据·python·深度学习·机器学习·数据分析·flask
weixin_4404016911 小时前
Win11 系统 Anaconda 下载+conda命令+Jupyter Notebook+VS Code
ide·python·jupyter·conda
知乎的哥廷根数学学派11 小时前
基于卷积特征提取和液态神经网络的航空发动机剩余使用寿命预测算法(python)
人工智能·pytorch·python·深度学习·神经网络·算法
高洁0111 小时前
AIGC技术与进展(2)
人工智能·python·深度学习·机器学习·数据挖掘
2501_9421917711 小时前
基于Faster-RCNN_Res2Net-101_FPN_2x_COCO的交通手势识别模型训练与实现_1
python
期末考复习中,蓝桥杯都没时间学了11 小时前
python调用百度智能云API完成文本情感分析
开发语言·python
CCPC不拿奖不改名11 小时前
“Token→整数索引” 的完整实现步骤
人工智能·python·rnn·神经网络·自然语言处理·token·josn