浅谈位运算及其应用(c++)

目录

在 C++ 编程中,位运算是一种强大而高效的操作方式,它允许我们直接对数据的二进制位进行操作。这不仅能够提高程序的性能,还能在某些特定的场景下实现一些独特而精妙的功能。在这篇博客中,我们将深入研究 C++ 中的位运算。

一、位运算的基础

(一)位与(&)

位与运算将两个操作数的对应位进行与操作,如果两个位都为 1,则结果位为 1,否则为 0。

cpp 复制代码
int a = 5;  // 0101
int b = 3;  // 0011
int result = a & b;  // 0001,结果为 1

(二)位或(|)

位或运算将两个操作数的对应位进行或操作,如果两个位中至少有一个为 1,则结果位为 1,否则为 0。

cpp 复制代码
int c = 5;  // 0101
int d = 3;  // 0011
int result = c | d;  // 0111,结果为 7

(三)位异或(^)

位异或运算将两个操作数的对应位进行异或操作,如果两个位不同,则结果位为 1,否则为 0。

cpp 复制代码
int e = 5;  // 0101
int f = 3;  // 0011
int result = e ^ f;  // 0110,结果为 6

(四)位取反(~)

位取反运算将操作数的每一位取反,即 1 变为 0,0 变为 1。

cpp 复制代码
int g = 5;  // 0101
int result = ~g;  // 1010,结果为 -6(考虑符号位)

(五)左移(<<)

左移运算将操作数的所有位向左移动指定的位数,右侧补 0。

cpp 复制代码
int h = 5;  // 0101
int result = h << 2;  // 010100,结果为 20

(六)右移(>>)

右移运算将操作数的所有位向右移动指定的位数,对于无符号数,左侧补 0;对于有符号数,左侧补符号位。

cpp 复制代码
int i = 20;  // 10100
int result = i >> 2;  // 00101,结果为 5

二、位运算的应用

(一)设置、清除和检查特定位

通过位与、位或和位异或,可以方便地设置、清除或检查一个整数中的特定二进制位。

cpp 复制代码
int num = 0x12;  // 0001 0010
// 设置第 3 位
num |= (1 << 3);  // 0001 1010

// 清除第 2 位
num &= ~(1 << 2);  // 0001 0010

// 检查第 4 位是否为 1
bool isSet = (num & (1 << 4))!= 0;

(二)压缩数据存储

在某些情况下,可以使用位运算来有效地压缩数据,减少存储空间的使用。

例如,用一个字节表示 8 个布尔值。

cpp 复制代码
char flags = 0;
flags |= (1 << 0);  // 设置第 0 个布尔值为真
flags &= ~(1 << 1);  // 设置第 1 个布尔值为假

(三)快速计算乘除法

通过左移和右移可以实现快速的乘以 2 的幂和除以 2 的幂的运算。

cpp 复制代码
int num = 5;
int multiplyBy8 = num << 3;  // 相当于乘以 8
int divideBy4 = num >> 2;  // 相当于除以 4

(四)权限控制和标志位

在系统编程和权限管理中,常常使用位运算来表示和处理各种权限和标志。

cpp 复制代码
enum Permissions {
    READ = 1 << 0,
    WRITE = 1 << 1,
    EXECUTE = 1 << 2
};

int userPermissions = READ | WRITE;  // 用户具有读和写权限

(五)实现枚举类型的位标志组合

cpp 复制代码
enum OptionFlags {
    OPTION_1 = 1 << 0,
    OPTION_2 = 1 << 1,
    OPTION_3 = 1 << 2
};

void handleOptions(int options) {
    if (options & OPTION_1) {
        // 处理 OPTION_1 相关逻辑
    }
    if (options & OPTION_2) {
        // 处理 OPTION_2 相关逻辑
    }
    // 以此类推
}

三、位运算的性能优势

位运算通常比普通的算术运算更高效,因为它们直接在硬件层面上操作二进制位,不需要进行复杂的数学计算。

例如,在处理大量数据或者对性能要求苛刻的场景中,使用位运算可以显著提高程序的执行速度。

cpp 复制代码
// 比较使用乘法和左移的性能
#include <iostream>
#include <chrono>

void multiply(int n, int times) {
    for (int i = 0; i < n; ++i) {
        int result = i * times;
    }
}

void shiftLeft(int n, int times) {
    for (int i = 0; i < n; ++i) {
        int result = i << times;
    }
}

int main() {
    int n = 10000000;
    int times = 4;

    auto start1 = std::chrono::high_resolution_clock::now();
    multiply(n, times);
    auto end1 = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> elapsed1 = end1 - start1;

    auto start2 = std::chrono::high_resolution_clock::now();
    shiftLeft(n, times);
    auto end2 = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> elapsed2 = end2 - start2;

    std::cout << "乘法运算耗时: " << elapsed1.count() << " 秒" << std::endl;
    std::cout << "左移运算耗时: " << elapsed2.count() << " 秒" << std::endl;

    return 0;
}

四、位运算的注意事项

(一)符号扩展问题

在有符号数的右移操作中,要注意符号扩展可能导致的结果不一致。

cpp 复制代码
int signedNum = -5;
int shiftedSigned = signedNum >> 1;  // 结果取决于编译器的实现,可能不是预期的

(二)可移植性

不同的硬件平台和编译器可能对位运算的处理方式略有不同,尤其是涉及到有符号数的操作。

(三)可读性

位运算虽然高效,但可能会降低代码的可读性。在使用时,应添加足够的注释以说明其目的和逻辑。

五、总结

位运算在 C++ 中是一种强大而灵活的工具,掌握它可以让我们在编程中更加高效地处理数据、优化性能,并实现一些复杂而有趣的功能。但同时,我们也要注意其使用的场景和可能带来的潜在问题,以确保代码的正确性和可维护性。

希望通过这篇博客,您对位运算在 C++ 中的应用有了更深入的理解和认识,能够在实际编程中灵活运用,创造出更优秀的程序。

例题讲解

高低位交换

题目描述

给出一个小于 2 32 2^{32} 232 的非负整数。这个数可以用一个 32 32 32 位的二进制数表示(不足 32 32 32 位用 0 0 0 补足)。我们称这个二进制数的前 16 16 16 位为"高位",后 16 16 16 位为"低位"。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。

例如,数 1314520 1314520 1314520 用二进制表示为 0000   0000   0001   0100   0000   1110   1101   1000 0000\,0000\,0001\,0100\,0000\,1110\,1101\,1000 00000000000101000000111011011000(添加了 11 11 11 个前导 0 0 0 补足为 32 32 32 位),其中前 16 16 16 位为高位,即 0000   0000   0001   0100 0000\,0000\,0001\,0100 0000000000010100;后 16 16 16 位为低位,即 0000   1110   1101   1000 0000\,1110\,1101\,1000 0000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数 0000   1110   1101   1000   0000   0000   0001   0100 0000\,1110\,1101\,1000\,0000\,0000\,0001\,0100 00001110110110000000000000010100。它即是十进制的 249036820 249036820 249036820。

输入格式

一个小于 2 32 2^{32} 232 的非负整数

输出格式

将新的数输出

样例 #1

样例输入 #1
1314520
样例输出 #1
249036820

思路

就是一个简单的位移运算

AC代码

cpp 复制代码
#include <iostream>
using namespace std;
unsigned int n;

int main()
{
    cin>>n;
    cout<<(n >> 16) + (n << 16)<<endl;
    return 0;
}

异或积

题目背景

id: 4d7e \texttt{id: 4d7e} id: 4d7e

小 H 在课堂上学习了异或运算。

对于两个非负整数 x , y x,y x,y,它们的异或是指,将它们作为二进制数,对二进制表示中的每一位进行如下运算得到的结果:

  • x x x 和 y y y 的这一位上不同时,结果的这一位为 1 1 1;
  • x x x 和 y y y 的这一位上相同时,结果的这一位为 0 0 0。

x x x 和 y y y 的异或被记为 x xor ⁡ y x \operatorname{xor} y xxory 或 x ⊕ y x \oplus y x⊕y。

在 C++ 中,你可以用 x ^ y 得到 x x x 与 y y y 的异或值。

另外,若干个数的异或称之为异或和

题目描述

小 H 还了解到,一个长度为 n n n 的数列 a a a 的异或积 是一个等长的数列 b b b,其中 b i b_i bi 等于数列 a a a 中除了 a i a_i ai 以外其他元素的异或和,即

b i = ⨁ j = 1 n [ j ≠ i ] a j b_i = \bigoplus \limits_{j = 1}^{n} [j\ne i] a_j bi=j=1⨁n[j=i]aj

例如,数列 { 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} {1,2,3,4} 的异或积为 { 5 , 6 , 7 , 0 } \{5, 6, 7, 0\} {5,6,7,0}。

异或积变换是指将一个数列用它的异或积替换的过程,由于异或积变换之后数列长度不变,所以异或积变换可以连续进行多次。

现在,小 H 有一个长度为 n n n 的数列 a a a,他想请你帮他计算出 a a a 经过 k k k 次异或积变换之后得到的序列。

输入格式

本题单个测试点内有多组测试数据

第一行一个整数 T T T,表示测试数据组数。

对于每一组测试数据:

第一行两个整数 n , k n,k n,k。

第二行 n n n 个整数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,⋯,an。

输出格式

对于每一组测试数据:

一行 n n n 个整数,表示数列 a a a 经过 k k k 次异或积变换之后得到的数列。

样例 #1

样例输入 #1
1
4 1
1 2 3 4
样例输出 #1
5 6 7 0

样例 #2

样例输入 #2
1
4 2
0 0 0 1
样例输出 #2
0 0 0 1

样例 #3

样例输入 #3
见附件中的 samples/xor3.in
样例输出 #3
见附件中的 samples/xor3.ans

提示

样例 1 解释

此样例即为题目描述中的例子。

样例 2 解释

第 1 1 1 次异或积变换: { 0 , 0 , 0 , 1 } → { 1 , 1 , 1 , 0 } \{0,0,0,1\}\to\{1,1,1,0\} {0,0,0,1}→{1,1,1,0};

第 2 2 2 次异或积变换: { 1 , 1 , 1 , 0 } → { 0 , 0 , 0 , 1 } \{1,1,1,0\}\to\{0,0,0,1\} {1,1,1,0}→{0,0,0,1}。

数据规模与约定

对于 100 % 100\% 100% 的测试数据, 1 ≤ T ≤ 10 1 \le T \le 10 1≤T≤10, 2 ≤ n ≤ 1 0 5 2 \le n \le 10^5 2≤n≤105, 1 ≤ k ≤ 1 0 18 1 \le k \le 10^{18} 1≤k≤1018, 0 ≤ a i < 2 32 0 \le a_i < 2^{32} 0≤ai<232。

测试点编号 n ≤ n\leq n≤ k ≤ k \leq k≤ 特殊性质
1 ∼ 3 1 \sim 3 1∼3 100 100 100 100 100 100
4 ∼ 5 4 \sim 5 4∼5 1000 1000 1000 1000 1000 1000
6 ∼ 7 6 \sim 7 6∼7 3 3 3 1 0 18 10^{18} 1018
8 ∼ 10 8 \sim 10 8∼10 1 0 5 10^5 105 3 3 3
11 ∼ 13 11 \sim 13 11∼13 1 0 5 10^5 105 1 0 18 10^{18} 1018 a a a 中所有数的异或和为 0 0 0
14 ∼ 15 14 \sim 15 14∼15 1 0 5 10^5 105 1 0 18 10^{18} 1018 n n n 为奇数
16 ∼ 17 16 \sim 17 16∼17 1 0 5 10^5 105 1 0 18 10^{18} 1018 n n n 为偶数
18 ∼ 20 18 \sim 20 18∼20 1 0 5 10^5 105 1 0 18 10^{18} 1018
提示

在 C++ 中,对于数据范围 0 ≤ x < 2 32 0\le x<2^{32} 0≤x<232,你可以:

  • 使用 unsigned int x 来定义;
  • 使用 cin >> xscanf("%u", &x) 来输入;
  • 使用 cout << xprintf("%u", x) 来输出。

思路

可以发现当 n 为偶数时,答案将会在 原来的式子 与 变换一次的式子 之间徘徊。

同样,我们也可以验证 n 是奇数的性质:除第一次外其他都是 变换一次的式子。

只需要特判 n 和 k 均为偶数时即可。

AC代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll T, n; ll k;
ll a[100007], b[100007];
inline void work() {
	ll sum = 0;
	for(int i = 1; i <= n; i++) sum ^= a[i];
	for(int i = 1; i <= n; i++) b[i] = sum ^ a[i];
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>T;
	while(T--) {
		cin>>n>>k;
		for(int i = 1; i <= n; i++)cin>>a[i];
		if(n % 2 == 0 && k % 2 == 0) {
			for(int i = 1; i <= n; i++)
				cout<<a[i]<<" ";
			cout<<endl;
			continue;
		}
		work();
		for(int i = 1; i <= n; i++)
			cout<<b[i]<<" ";
		cout<<endl;
	}
	return 0;
}

「Daily OI Round 1」Xor

题目描述

给定一个长度为 n n n 的序列,一共有 q q q 次询问,每次询问给定正整数 x x x,然后依次执行以下操作:

  • 把序列中所有数异或上 x x x。
  • 求长度最大的区间 [ l , r ] [l,r] [l,r]( l , r l,r l,r 是非负整数)满足区间中的每个整数在序列中出现,区间的长度定义为 r − l + 1 r-l+1 r−l+1。

注意,在每个询问过后序列是发生变化的。

几个需要说明的地方:

  1. "区间"指的是数的区间,比如区间 [ 1 , 3 ] [1,3] [1,3] 中的整数有 1 , 2 , 3 1,2,3 1,2,3,与序列无关。
  2. "序列"指的是修改后的序列,同时不包括之前的序列。

输入格式

第一行两个正整数 n , q n,q n,q 表示序列长度和询问个数。

第二行 n n n 个正整数 a i a_i ai 表示一开始的序列。

接下来 q q q 行,每行一个正整数 x x x 表示一个询问。

输出格式

输出 q q q 行,一行一个整数表示每个询问的答案。

样例 #1

样例输入 #1
5 2
1 2 3 4 5
1
1
样例输出 #1
4
5

样例 #2

样例输入 #2
10 10
5 9 8 3 5 7 10 19 5 24
10
56
19
14
18
53
52
57
96
1000
样例输出 #2
2
2
2
4
2
3
3
2
2
2

提示

样例解释

对于第一组样例,序列初始是 { 1 , 2 , 3 , 4 , 5 } \{1,2,3,4,5\} {1,2,3,4,5},第一次询问给定 x = 1 x=1 x=1,则异或后的序列为 { 0 , 3 , 2 , 5 , 4 } \{0,3,2,5,4\} {0,3,2,5,4}。区间 [ 2 , 5 ] [2,5] [2,5] 中的每个整数 2 , 3 , 4 , 5 2,3,4,5 2,3,4,5 都在这个序列中,这是满足条件的最大区间,所以答案为 5 − 2 + 1 = 4 5-2+1=4 5−2+1=4。

数据范围

本题开启捆绑测试。

Subtask \text{Subtask} Subtask 分值 n , q ≤ n,q\leq n,q≤ a i ≤ a_i\leq ai≤ x ≤ x\leq x≤
0 0 0 10 10 10 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103
1 1 1 20 20 20 5 × 1 0 5 5\times10^5 5×105 1 0 3 10^3 103 1 0 3 10^3 103
2 2 2 10 10 10 5 × 1 0 5 5\times10^5 5×105 1 0 3 10^3 103 5 × 1 0 5 5\times10^5 5×105
3 3 3 60 60 60 5 × 1 0 5 5\times10^5 5×105 5 × 1 0 5 5\times10^5 5×105 5 × 1 0 5 5\times10^5 5×105

对于全部数据,保证: 1 ≤ n , q , a i , x ≤ 5 × 1 0 5 1\leq n,q,a_i,x\leq 5\times10^5 1≤n,q,ai,x≤5×105。

AC代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
const int M = 25, N = 1 << 19 | 5;
int m = 19, n = 1 << m, q, t, x, y;
struct node{
	int l, r, m, p;
}s[2][N];
inline void pushup(node &u, node &l, node &r)
{
	u.l = l.p ? l.l + r.l : l.l;
	u.r = r.p ? r.r + l.r : r.r;
	u.m = max(l.r + r.l, max(l.m, r.m));
	u.p = l.p & r.p;
}
int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>q>>t;
	while(q -- )cin>>x, s[0][x] = {1, 1, 1, 1};
	for(int i = 1, x = 1, y = 0; i <= m; i ++ , x ^= 1, y ^= 1)
		for(int j = 0; j < n; j ++ )
			pushup(s[x][j], s[y][j], s[y][j ^ (1 << i - 1)]);
	while(t -- )cin>>x, y ^= x, cout<<s[1][y].m<<endl;
	return 0;
}

这是我的第十三篇文章,如有纰漏也请各位大佬指正

辛苦创作不易,还望看官点赞收藏打赏,后续还会更新新的内容。

相关推荐
游是水里的游3 分钟前
【算法day19】回溯:分割与子集问题
算法
不想当程序猿_3 分钟前
【蓝桥杯每日一题】分糖果——DFS
c++·算法·蓝桥杯·深度优先
cdut_suye15 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
南城花随雪。22 分钟前
单片机:实现FFT快速傅里叶变换算法(附带源码)
单片机·嵌入式硬件·算法
dundunmm38 分钟前
机器学习之scikit-learn(简称 sklearn)
python·算法·机器学习·scikit-learn·sklearn·分类算法
古希腊掌管学习的神38 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
波音彬要多做39 分钟前
41 stack类与queue类
开发语言·数据结构·c++·学习·算法
捕鲸叉40 分钟前
C++软件设计模式之外观(Facade)模式
c++·设计模式·外观模式
只做开心事2 小时前
C++之红黑树模拟实现
开发语言·c++
程序员老冯头3 小时前
第十五章 C++ 数组
开发语言·c++·算法