【Bug】Pytorch RuntimeError: DataLoader worker (pid(s) 15904) exited unexpectedly

【Bug1】RuntimeError: DataLoader worker (pid(s) 15904) exited unexpectedly

知乎:https://zhuanlan.zhihu.com/p/712407893

环境

python 复制代码
Windows 11
Python 3.10
torch 2.0.1
numpy 1.25.0

问题详情

在使用 PyTorch 的 DataLoader 时出现的错误。详情

python 复制代码
RuntimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...
.....
RuntimeError: DataLoader worker (pid(s) ) exited unexpectedly

意思是,这是运行时错误,是由于在主进程完成初始化之前试图启动了新的进程导致的错误。

错误的代码示例

python 复制代码
import torch
from torch.utils.data import Dataset, DataLoader

import numpy as np

# 假设我们有一些简单的数据
data = np.array([1,2,3,4,5,6,7])  # np, tensor 格式都可以
targets = torch.tensor([1,1,1,1,0,0,0])  # 标签

# 定义自定义数据集
class SimpleDataset(Dataset):
    def __init__(self, data, targets):
        self.data = data
        self.targets = targets

    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        return x, y

    def __len__(self):
        return len(self.data)
        
# 实例化数据集
dataset = SimpleDataset(data, targets)

# 创建 DataLoader, 如果启动多线程num_workers>=1,需要将启动代码放置在 if __name__ == "__main__": 下, 否则会报错
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2)

# 使用 DataLoader 迭代数据
for i, (batch_data, batch_label) in enumerate(dataloader):
    print(f"Batch {i}: batch_data: {batch_data}, batch_label: {batch_label}")

解决方法

【方法1】(不推荐)

这是由于多线程加载数据使用不当使用的错误,因此可以设置为单线程即可,num_workers 不设置或设置为0

python 复制代码
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=0)

【方法2】

将涉及dataloader 的代码放置在if __name__ == "__main__": 下运行,修改代码如下

python 复制代码
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np

# 定义自定义数据集
class SimpleDataset(Dataset):
    def __init__(self, data, targets):
        self.data = data
        self.targets = targets

    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        return x, y

    def __len__(self):
        return len(self.data)
        
def train():
    # 假设我们有一些简单的数据
    data = np.array([1,2,3,4,5,6,7])  # np, tensor 格式都可以
    targets = torch.tensor([1,1,1,1,0,0,0])  # 标签
    # 实例化数据集
    dataset = SimpleDataset(data, targets)

    # 创建 DataLoader, 如果启动多线程,需要将启动代码放置在 if __name__ == "__main__": 下, 否则会报错
    dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2)

    # 使用 DataLoader 迭代数据
    for i, (batch_data, batch_label) in enumerate(dataloader):
        print(f"Batch {i}: batch_data: {batch_data}, batch_label: {batch_label}")

if __name__ == "__main__":
     train()

参考

解决pytorch报错:RuntimeError: DataLoader worker (pid(s) ***, ***, ***, ***) exited unexpectedly - 知乎 (zhihu.com)

相关推荐
世优科技虚拟人2 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用8 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默20 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot25128 分钟前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好32 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
果冻人工智能2 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工2 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz2 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
向上的车轮2 小时前
软件世界中的超级bug有哪些?
bug
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai