【Bug】Pytorch RuntimeError: DataLoader worker (pid(s) 15904) exited unexpectedly

【Bug1】RuntimeError: DataLoader worker (pid(s) 15904) exited unexpectedly

知乎:https://zhuanlan.zhihu.com/p/712407893

环境

python 复制代码
Windows 11
Python 3.10
torch 2.0.1
numpy 1.25.0

问题详情

在使用 PyTorch 的 DataLoader 时出现的错误。详情

python 复制代码
RuntimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...
.....
RuntimeError: DataLoader worker (pid(s) ) exited unexpectedly

意思是,这是运行时错误,是由于在主进程完成初始化之前试图启动了新的进程导致的错误。

错误的代码示例

python 复制代码
import torch
from torch.utils.data import Dataset, DataLoader

import numpy as np

# 假设我们有一些简单的数据
data = np.array([1,2,3,4,5,6,7])  # np, tensor 格式都可以
targets = torch.tensor([1,1,1,1,0,0,0])  # 标签

# 定义自定义数据集
class SimpleDataset(Dataset):
    def __init__(self, data, targets):
        self.data = data
        self.targets = targets

    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        return x, y

    def __len__(self):
        return len(self.data)
        
# 实例化数据集
dataset = SimpleDataset(data, targets)

# 创建 DataLoader, 如果启动多线程num_workers>=1,需要将启动代码放置在 if __name__ == "__main__": 下, 否则会报错
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2)

# 使用 DataLoader 迭代数据
for i, (batch_data, batch_label) in enumerate(dataloader):
    print(f"Batch {i}: batch_data: {batch_data}, batch_label: {batch_label}")

解决方法

【方法1】(不推荐)

这是由于多线程加载数据使用不当使用的错误,因此可以设置为单线程即可,num_workers 不设置或设置为0

python 复制代码
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=0)

【方法2】

将涉及dataloader 的代码放置在if __name__ == "__main__": 下运行,修改代码如下

python 复制代码
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np

# 定义自定义数据集
class SimpleDataset(Dataset):
    def __init__(self, data, targets):
        self.data = data
        self.targets = targets

    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        return x, y

    def __len__(self):
        return len(self.data)
        
def train():
    # 假设我们有一些简单的数据
    data = np.array([1,2,3,4,5,6,7])  # np, tensor 格式都可以
    targets = torch.tensor([1,1,1,1,0,0,0])  # 标签
    # 实例化数据集
    dataset = SimpleDataset(data, targets)

    # 创建 DataLoader, 如果启动多线程,需要将启动代码放置在 if __name__ == "__main__": 下, 否则会报错
    dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2)

    # 使用 DataLoader 迭代数据
    for i, (batch_data, batch_label) in enumerate(dataloader):
        print(f"Batch {i}: batch_data: {batch_data}, batch_label: {batch_label}")

if __name__ == "__main__":
     train()

参考

解决pytorch报错:RuntimeError: DataLoader worker (pid(s) ***, ***, ***, ***) exited unexpectedly - 知乎 (zhihu.com)

相关推荐
小白学C++.7 分钟前
大模型论文:CRAMMING TRAINING A LANGUAGE MODEL ON ASINGLE GPU IN ONE DAY(效率提升)-final
人工智能·语言模型·自然语言处理
Encarta199310 分钟前
【语音识别】vLLM 部署 Whisper 语音识别模型指南
人工智能·whisper·语音识别
AWS官方合作商20 分钟前
AWS Bedrock:开启企业级生成式AI的钥匙【深度解析】
大数据·人工智能·aws
神经星星21 分钟前
【vLLM 学习】API 客户端
数据库·人工智能·机器学习
星江月26 分钟前
EchoMimic 音频驱动照片生成视频部署测试
人工智能·echomimic·语音生成视频
剑盾云安全专家30 分钟前
AI制作PPT,如何轻松打造高效演示文稿
人工智能·科技·aigc·powerpoint·软件
进来有惊喜1 小时前
OpenCV 表情识别
人工智能·opencv·计算机视觉
Eavan努力努力再努力1 小时前
[目标检测]2023ICCV:DiffusionDet: Diffusion Model for Object Detection
人工智能·目标检测·计算机视觉
进来有惊喜1 小时前
opencv指纹匹配
人工智能·opencv·计算机视觉
啊哈哈哈哈哈啊哈哈1 小时前
R3打卡——tensorflow实现RNN心脏病预测
人工智能·深度学习·学习