python后端 启用 gzip 压缩响应体

1. Flask

服务器端代码 (使用 Flask)

python 复制代码
from flask import Flask, jsonify, request
from flask_compress import Compress
import logging

app = Flask(__name__)
Compress(app)  # 启用 gzip 压缩

# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@app.route('/data', methods=['GET'])
def get_data():
    try:
        # 处理请求参数
        count = int(request.args.get('count', 100))
        
        # 返回一些示例 JSON 数据
        data = {
            'message': 'Hello, this is compressed data!',
            'numbers': list(range(count))
        }
        return jsonify(data)
    except Exception as e:
        logger.error(f"Error occurred: {e}")
        return jsonify({'error': 'Internal Server Error'}), 500

@app.errorhandler(404)
def page_not_found(e):
    return jsonify({'error': 'Not Found'}), 404

if __name__ == '__main__':
    app.run(debug=True)

客户端代码 (接收并解压 gzip 响应)

python 复制代码
import requests
import gzip
import json
from io import BytesIO

def fetch_data(url):
    try:
        # 发送请求到服务器端
        response = requests.get(url)

        # 检查响应头,确认数据是否被 gzip 压缩
        if response.headers.get('Content-Encoding') == 'gzip':
            # 使用 gzip 解压响应内容
            compressed_content = BytesIO(response.content)
            with gzip.GzipFile(fileobj=compressed_content, mode='rb') as f:
                decompressed_data = f.read()
            
            # 解码解压后的数据
            data = json.loads(decompressed_data.decode('utf-8'))
            return data
        else:
            return response.json()
    except requests.RequestException as e:
        print(f"HTTP request failed: {e}")
        return None
    except json.JSONDecodeError as e:
        print(f"Failed to decode JSON: {e}")
        return None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None

if __name__ == '__main__':
    url = 'http://127.0.0.1:5000/data?count=50'
    data = fetch_data(url)
    if data:
        print(data)
    else:
        print("Failed to fetch data.")

2. FastAPI

服务器端代码 (使用 FastAPI)

python 复制代码
pip install fastapi uvicorn fastapi-compress
python 复制代码
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from fastapi_compress import Compress
import logging

app = FastAPI()
compressor = Compress()
compressor.init_app(app)

# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@app.get("/data")
async def get_data(count: int = 100):
    try:
        # 返回一些示例 JSON 数据
        data = {
            'message': 'Hello, this is compressed data!',
            'numbers': list(range(count))
        }
        return JSONResponse(content=data)
    except Exception as e:
        logger.error(f"Error occurred: {e}")
        raise HTTPException(status_code=500, detail="Internal Server Error")

@app.exception_handler(404)
async def not_found_handler(request: Request, exc: HTTPException):
    return JSONResponse(status_code=404, content={'error': 'Not Found'})

if __name__ == '__main__':
    import uvicorn
    uvicorn.run(app, host="127.0.0.1", port=8000, log_level="info")

客户端代码 (接收并解压 gzip 响应)

python 复制代码
import requests
import gzip
import json
from io import BytesIO

def fetch_data(url):
    try:
        # 发送请求到服务器端
        response = requests.get(url)

        # 检查响应头,确认数据是否被 gzip 压缩
        if response.headers.get('Content-Encoding') == 'gzip':
            # 使用 gzip 解压响应内容
            compressed_content = BytesIO(response.content)
            with gzip.GzipFile(fileobj=compressed_content, mode='rb') as f:
                decompressed_data = f.read()
            
            # 解码解压后的数据
            data = json.loads(decompressed_data.decode('utf-8'))
            return data
        else:
            return response.json()
    except requests.RequestException as e:
        print(f"HTTP request failed: {e}")
        return None
    except json.JSONDecodeError as e:
        print(f"Failed to decode JSON: {e}")
        return None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None

if __name__ == '__main__':
    url = 'http://127.0.0.1:8000/data?count=50'
    data = fetch_data(url)
    if data:
        print(data)
    else:
        print("Failed to fetch data.")
相关推荐
Katecat996636 小时前
YOLO11分割算法实现甲状腺超声病灶自动检测与定位_DWR方法应用
python
玩大数据的龙威6 小时前
农经权二轮延包—各种地块示意图
python·arcgis
ZH15455891316 小时前
Flutter for OpenHarmony Python学习助手实战:数据库操作与管理的实现
python·学习·flutter
belldeep6 小时前
python:用 Flask 3 , mistune 2 和 mermaid.min.js 10.9 来实现 Markdown 中 mermaid 图表的渲染
javascript·python·flask
喵手6 小时前
Python爬虫实战:电商价格监控系统 - 从定时任务到历史趋势分析的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·电商价格监控系统·从定时任务到历史趋势分析·采集结果sqlite存储
喵手6 小时前
Python爬虫实战:京东/淘宝搜索多页爬虫实战 - 从反爬对抗到数据入库的完整工程化方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·京东淘宝页面数据采集·反爬对抗到数据入库·采集结果csv导出
B站_计算机毕业设计之家7 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法
PPPPPaPeR.7 小时前
光学算法实战:深度解析镜片厚度对前后表面折射/反射的影响(纯Python实现)
开发语言·python·数码相机·算法
JaydenAI7 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain
骇城迷影7 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归