python:基于YOLO框架和遥感图像的目标检测

作者:CSDN @ 养乐多

本文将介绍如何通过YOLO框架和遥感图像进行目标检测的代码。


文章目录


一、数据集下载与格式转换

下载数据集之后,统一转换为YOLO格式。

1.1 NWPU VHR-10(73.1 MB)

下载链接:https://opendatalab.com/OpenDataLab/NWPU_VHR-10

标注信息

python 复制代码
class_id_to_name = {
    0: "飞机",
    1: "船只",
    2: "储油罐",
    3: "棒球场",
    4: "网球场",
    5: "篮球场",
    6: "跑道场地",
    7: "港口",
    8: "桥梁",
    9: "车辆"
}

NWPU VHR-10 数据集转换为YOLO格式,参考博客《python:将 NWPU_VHR-10 遥感目标检测数据集转换成 YOLO 格式》。并配置data.yaml文件。

1.2 DIOR(7.06 GB)

下载链接:https://opendatalab.com/OpenDataLab/DIOR

DIOR数据集转换为YOLO格式,参考博客《YOLO:VOC格式数据集转换为YOLO数据集格式》,并配置data.yaml文件。

1.3 配置data.yaml

data.yaml 文件中,写入以下几行代码。保存。

修改训练图片路径和验证路径。

python 复制代码
train: E:\\DataSet\\NWPU-YOLO\\train
val: E:\\DataSet\\NWPU-YOLO\\val
nc: 10
#names: ['飞机', '船只', '储油罐', '棒球场', '网球场', '篮球场', '跑道场地', '港口', '桥梁', '车辆']
names: ['Airplane', 'Ship', 'Oil Tank', 'Baseball Field', 'Tennis Court', 'Basketball Court', 'Runway', 'Harbor', 'Bridge', 'Vehicle']

二、训练

python 复制代码
from ultralytics import YOLO
from swanlab.integration.ultralytics import add_swanlab_callback

if __name__ == '__main__':
    model = YOLO("yolov8n.pt")
    add_swanlab_callback(model, project='training_project')
    model.train(data="D:/data.yaml", epochs=10, workers=0) 
    metrics = model.val()
    # model.predict("../测试图片/00011.jpg", imgsz=640, save=True, device=0)
    path = model.export(format="onnx")

三、训练结果

训练100次。

标注数据1:

预测结果1:

标注数据2:

预测数据2:

相关推荐
小墨&晓末6 分钟前
【PythonGui实战】自动摇号小程序
python·算法·小程序·系统安全
海棠AI实验室6 分钟前
机器学习基础算法 (一)-线性回归
人工智能·python·机器学习
是我知白哒20 分钟前
lxml提取某个外层标签里的所有文本
前端·爬虫·python
测试老哥31 分钟前
Python自动化测试图片比对算法
自动化测试·软件测试·python·测试工具·程序人生·职场和发展·测试用例
爱数学的程序猿32 分钟前
Python入门:1.Python介绍
开发语言·python
檀越剑指大厂2 小时前
【Python系列】Python中的`any`函数:检查“至少有一个”条件满足
开发语言·python
程序员黄同学3 小时前
如何使用 Python 连接 MySQL 数据库?
数据库·python·mysql
I_Am_Me_3 小时前
【JavaEE初阶】线程安全问题
开发语言·python
张叔zhangshu3 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
运维&陈同学3 小时前
【Elasticsearch05】企业级日志分析系统ELK之集群工作原理
运维·开发语言·后端·python·elasticsearch·自动化·jenkins·哈希算法