20240806---特征选择与稀疏学习笔记---pptp61-p92---奇异值分解/压缩感知、字典学习

一.奇异值分解

2.要进行特征分解,则矩阵A为方阵,如果矩阵 𝐴A 不是方阵(即行数和列数不同),我们仍然可以对其进行分解,这就是奇异值分解(SVD)的强大之处。



二.压缩感知

1.采样频率是模拟信号最高频率的两倍,则采样信号能重构模拟信号。

但是为了方便信号传输,我们要对采样完的数字信号进行压缩,压缩就是会损失部分信息

2.压缩感知,信号在正交空间具有稀疏性(也就是可压缩性)

3.cs信息获取系统










(限定等距性的概念不是很清楚)



···················







相关推荐
烟锁迷城34 分钟前
软考中级 软件设计师 第一章 第十节 可靠性
笔记
胡楚昊34 分钟前
B站pwn教程笔记-1
笔记
Bunny02126 小时前
SpringMVC笔记
java·redis·笔记
架构文摘JGWZ6 小时前
FastJson很快,有什么用?
后端·学习
量子-Alex8 小时前
【多视图学习】显式视图-标签问题:多视图聚类的多方面互补性研究
学习
乔木剑衣9 小时前
Java集合学习:HashMap的原理
java·学习·哈希算法·集合
练小杰9 小时前
Linux系统 C/C++编程基础——基于Qt的图形用户界面编程
linux·c语言·c++·经验分享·qt·学习·编辑器
皮肤科大白10 小时前
如何在data.table中处理缺失值
学习·算法·机器学习
皮肤科大白10 小时前
“““【运用 R 语言里的“predict”函数针对 Cox 模型展开新数据的预测以及推理。】“““
学习
汤姆和佩琦10 小时前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn