20240806---特征选择与稀疏学习笔记---pptp61-p92---奇异值分解/压缩感知、字典学习

一.奇异值分解

2.要进行特征分解,则矩阵A为方阵,如果矩阵 𝐴A 不是方阵(即行数和列数不同),我们仍然可以对其进行分解,这就是奇异值分解(SVD)的强大之处。



二.压缩感知

1.采样频率是模拟信号最高频率的两倍,则采样信号能重构模拟信号。

但是为了方便信号传输,我们要对采样完的数字信号进行压缩,压缩就是会损失部分信息

2.压缩感知,信号在正交空间具有稀疏性(也就是可压缩性)

3.cs信息获取系统










(限定等距性的概念不是很清楚)



···················







相关推荐
MarkHD3 小时前
智能体在车联网中的应用:第51天 模仿学习与离线强化学习:破解数据效率与安全困局的双刃剑
学习·安全
Drawing stars6 小时前
JAVA后端 前端 大模型应用 学习路线
java·前端·学习
崇山峻岭之间6 小时前
Matlab学习记录33
开发语言·学习·matlab
玄〤7 小时前
黑马点评中 VoucherOrderServiceImpl 实现类中的一人一单实现解析(单机部署)
java·数据库·redis·笔记·后端·mybatis·springboot
科技林总7 小时前
【系统分析师】3.5 多处理机系统
学习
芯思路8 小时前
STM32开发学习笔记之三【按键】
笔记·stm32·学习
Lips6118 小时前
2026.1.11力扣刷题笔记
笔记·算法·leetcode
charlie1145141919 小时前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy
咚咚王者9 小时前
人工智能之核心基础 机器学习 第十二章 半监督学习
人工智能·学习·机器学习
袁气满满~_~9 小时前
Python数据分析学习
开发语言·笔记·python·学习