【数据集】Yolo人体关键点数据集处理

文章目录

1、介绍

人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识别、行为分析、人机交互等的前置任务。一般情况下可以将人体关键点检测细分为单人/多人关键点检测、2D/3D关键点检测,同时有算法在完成关键点检测之后还会进行关键点的跟踪,也被称为人体姿态跟踪。

本次要介绍的数据集是2D关键点检测数据集,数据集主要来自COCO2017,经过对COCO数据集JSON文件进行预处理提取人体关键点信息,一共提取10000 张人体姿态数据集,以及对应的必要信息,已经转化为Yolo格式存储。

2、数据集格式

keypoint_dataset
	|
	|_______images
	|		  |_____000000000049.jpg
	|		  |_____ ......
	|_______labels
	|		  |_____000000000049.txt
	|		  |_____ ......		  

3 、COCO人体关键点示意图

下图中,共17个关节点(鼻子x1、眼睛x2、耳朵x2、肩部x2、肘部x2、手腕x2、髋部x2、膝关节x2、脚腕x2):

4、数据集预处理

这里数据集预处理主要包括5个内容,分别是read_jsonshowjson2yolosplit_datasetvalidation

4.1、读取JSON文件

python 复制代码
def read_json(json_path):
    d = defaultdict(list)
    for json_name in tqdm(os.listdir(json_path)):
        json_full_path = json_path + '/' + json_name
        with open(json_full_path, 'r', encoding='utf-8') as file:  
            data = json.load(file)
        image_name = data['image_name']
        # category = data['category']
        # width = data['width']
        # height = data['height']
        # keypoints = data['key_points']
        # bbox = data['bbox']
        image_id = image_name.split('.')[0]
        d[int(image_id)]= data 
    print(f'json 文件读取完成,一共{len(d.keys())}个数据')
    return d

4.2、可视化

python 复制代码
def visualization(ax,keypoints,bbox):
    #随机颜色
    c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
    #关键点之间的连线
    ls = [[15,13],[13,11],[16,14],[14,12],[11,12],[5,11],[6,12],[5,6],[5,7],
          [6,8],[7,9],[8,10],[1,2],[0,1],[0,2],[1,3],[2,4],[3,5],[4,6]]
    sks = np.array(ls)
    #获取关键点坐标x,y,v
    kp = np.array(keypoints)
    x = kp[0::3]
    y = kp[1::3]
    v = kp[2::3]
    for sk in sks:
        if np.all(v[sk]>0):
            # 画点之间的连接线
            plt.plot(x[sk],y[sk], linewidth=1, color=c)
    # 画点
    p = plt.plot(x[v>0], y[v>0],'o',markersize=4, markerfacecolor=c, markeredgecolor='k',markeredgewidth=1)
    p = plt.plot(x[v>1], y[v>1],'o',markersize=4, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)
    # 画矩形边界,多边形填充+矩形边界:
    x, y, w, h = bbox[0],bbox[1],bbox[2],bbox[3]
    ax.add_patch(Polygon(xy=[[x, y], [x, y+h], [x+w, y+h], [x+w, y]], color='k', alpha=0.3))
    ax.add_patch(Rectangle(xy=(x, y), width=w, height=h, fill=False, color=c, alpha=1))
    plt.plot(x + w/2,y+h/2,'*',markersize=5, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)

def show(data,image_root):
    for image_id in data.keys():

        img = io.imread('%s/%s' % (image_root, data[image_id]['image_name']))
        plt.axis('off')
        ax = plt.gca()
        for i in range(len(data[image_id]['key_points'])):
            visualization(ax, data[image_id]['key_points'][i], data[image_id]['bbox'][i])
        plt.imshow(img)
        plt.axis('off')
        plt.show()

4.3、JSON格式转Yolo格式

yolo标注格式为:类别 、标注框中心点(x,y)、长和宽(w,h),关键点坐标以及可见度(kx1,ky1,kv1,kx2,ky2,kv2...),然后并根据图片长宽进行归一化处理

python 复制代码
def json2yolo(data,txt_path):
    if not os.path.exists(txt_path):
        os.mkdir(txt_path)
    for image_id in tqdm(data.keys()):
        txt_name = data[image_id]['image_name'].split('.')[0]
        category = data[image_id]['category']
        width = data[image_id]['width']
        height = data[image_id]['height']
        keypoints = data[image_id]['key_points']
        bbox = data[image_id]['bbox']
        '''
        yolo标注格式
        类别 、标注框中心点、长和宽,关键点坐标以及可见度
        根据图片长高进行归一化处理
        '''
        for i in range(len(keypoints)):
            #对标注框进行预处理
            box = bbox[i]
            keypoint = keypoints[i]
            # print(keypoint)
            #x,y为左上角坐标,w,h为宽高
            x,y,w,h = box[0],box[1],box[2],box[3]
            xx = x + w/2
            yy = y + h/2
            #归一化
            xx,yy,ww,hh = xx/width,yy/height,w/width,h/height
            #关键点归一化
            proc_keypoint = []
            for p in range(0,len(keypoint),3):
                x,y,v = keypoint[p],keypoint[p+1],keypoint[p+2]
                kx,ky = x/width, y/height
                proc_keypoint.extend([kx,ky,v])
            #写入txt文件
            yolo_str = f'{category} {xx:.6f} {yy:.6f} {ww:.6f} {hh:.6f} '
            yolo_str = yolo_str + ' '.join([f'{i:.6f}' for i in proc_keypoint])
            
            with open(f'{txt_path}/{txt_name}.txt','a+') as f:
                f.write(yolo_str + '\n')
    print('转化为yolo txt格式完成!')

4.4、划分数据集

划分数据集格式为yolo需要的格式

python 复制代码
def split_dataset(image_root,txt_root,img_targe_file,label_target_file,split_ratio=0.6):
    imgs = os.listdir(image_root)
    import random
    random.seed(2024)
    random.shuffle(imgs)
    #这里仅仅取了1万张图片进行测试,由于显存限制,
    ims = imgs[:10000]
    random.shuffle(ims)
    train_num = int(len(ims)*split_ratio)
    val_num = int(len(ims)*(1-split_ratio)/2)

    train_set = ims[:train_num]
    val_set = ims[train_num:train_num+val_num]
    test_set = ims[-val_num:]

    move_file(train_set,image_root,txt_root,img_targe_file,label_target_file,mode='train')
    move_file(val_set,image_root,txt_root,img_targe_file,label_target_file,mode='val')
    move_file(test_set,image_root,txt_root,img_targe_file,label_target_file,mode='test')

def move_file(dataset,image_root,txt_root,img_targe_file,label_target_file,mode='train'):
    for img in tqdm(dataset):
        img_path = image_root + '/' + img
        txt_path = txt_root + '/' + img.replace('jpg','txt')
        img_targe_file_full = img_targe_file + '/' + mode
        label_target_file_full = label_target_file + '/' + mode


        shutil.copy(img_path, img_targe_file_full)
        shutil.copy(txt_path, label_target_file_full)

4.5、验证

python 复制代码
def validation():
    images = r'E:\datasets\keypoint_dataset\datasets\images'
    labels = r'E:\datasets\keypoint_dataset\datasets\labels'
    for mode in ['train','val','test']:
        img_path = images + '/' + mode
        label_path = labels + '/' + mode
        assert len(os.listdir(img_path)) == len(os.listdir(label_path)),f'{mode}数据划分验证失败'
        for img,lb in zip(os.listdir(img_path),os.listdir(label_path)):
            img_name = img.split('.')[0]
            lb_name = lb.split('.')[0]
            if img_name != lb_name:
                 assert '数据划分验证失败'
    print('数据划分验证成功!')
    pass

5、完整代码

python 复制代码
import json
from collections import defaultdict
import numpy as np
import os
from tqdm import tqdm
import shutil
from matplotlib import pyplot as plt
import skimage.io as io

from matplotlib.patches import Polygon,Rectangle
def visualization(ax,keypoints,bbox):
    #随机颜色
    c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
    #关键点之间的连线
    ls = [[15,13],[13,11],[16,14],[14,12],[11,12],[5,11],[6,12],[5,6],[5,7],
          [6,8],[7,9],[8,10],[1,2],[0,1],[0,2],[1,3],[2,4],[3,5],[4,6]]
    sks = np.array(ls)
    #获取关键点坐标x,y,v
    kp = np.array(keypoints)
    x = kp[0::3]
    y = kp[1::3]
    v = kp[2::3]
    for sk in sks:
        if np.all(v[sk]>0):
            # 画点之间的连接线
            plt.plot(x[sk],y[sk], linewidth=1, color=c)
    # 画点
    p = plt.plot(x[v>0], y[v>0],'o',markersize=4, markerfacecolor=c, markeredgecolor='k',markeredgewidth=1)
    p = plt.plot(x[v>1], y[v>1],'o',markersize=4, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)
    # 画矩形边界,多边形填充+矩形边界:
    x, y, w, h = bbox[0],bbox[1],bbox[2],bbox[3]
    ax.add_patch(Polygon(xy=[[x, y], [x, y+h], [x+w, y+h], [x+w, y]], color='k', alpha=0.3))
    ax.add_patch(Rectangle(xy=(x, y), width=w, height=h, fill=False, color=c, alpha=1))
    plt.plot(x + w/2,y+h/2,'*',markersize=5, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)

def read_json(json_path):
    d = defaultdict(list)
    
    for json_name in tqdm(os.listdir(json_path)):
        json_full_path = json_path + '/' + json_name
        with open(json_full_path, 'r', encoding='utf-8') as file:  
            data = json.load(file)
        image_name = data['image_name']
        # category = data['category']
        # width = data['width']
        # height = data['height']
        # keypoints = data['key_points']
        # bbox = data['bbox']
        image_id = image_name.split('.')[0]
        
        d[int(image_id)]= data 
    
    print(f'json 文件读取完成,一共{len(d.keys())}个数据')
    return d
def show(data,image_root):
    for image_id in data.keys():

        img = io.imread('%s/%s' % (image_root, data[image_id]['image_name']))
        plt.axis('off')
        ax = plt.gca()
        for i in range(len(data[image_id]['key_points'])):
            visualization(ax, data[image_id]['key_points'][i], data[image_id]['bbox'][i])
        plt.imshow(img)
        plt.axis('off')
        plt.show()
def json2yolo(data,txt_path):
    if not os.path.exists(txt_path):
        os.mkdir(txt_path)
    for image_id in tqdm(data.keys()):
        txt_name = data[image_id]['image_name'].split('.')[0]
        category = data[image_id]['category']
        width = data[image_id]['width']
        height = data[image_id]['height']
        keypoints = data[image_id]['key_points']
        bbox = data[image_id]['bbox']
        '''
        yolo标注格式
        类别 、标注框中心点、长和宽,关键点坐标以及可见度
        根据图片长高进行归一化处理
        '''
        for i in range(len(keypoints)):
            #对标注框进行预处理
            box = bbox[i]
            keypoint = keypoints[i]
            # print(keypoint)
            #x,y为左上角坐标,w,h为宽高
            x,y,w,h = box[0],box[1],box[2],box[3]
            xx = x + w/2
            yy = y + h/2
            #归一化
            xx,yy,ww,hh = xx/width,yy/height,w/width,h/height
            #关键点归一化
            proc_keypoint = []
            for p in range(0,len(keypoint),3):
                x,y,v = keypoint[p],keypoint[p+1],keypoint[p+2]
                kx,ky = x/width, y/height
                proc_keypoint.extend([kx,ky,v])
            #写入txt文件
            yolo_str = f'{category} {xx:.6f} {yy:.6f} {ww:.6f} {hh:.6f} '
            yolo_str = yolo_str + ' '.join([f'{i:.6f}' for i in proc_keypoint])
            
            with open(f'{txt_path}/{txt_name}.txt','a+') as f:
                f.write(yolo_str + '\n')
    print('转化为yolo txt格式完成!')

def split_dataset(image_root,txt_root,img_targe_file,label_target_file,split_ratio=0.6):
    imgs = os.listdir(image_root)
    import random
    random.seed(2024)
    random.shuffle(imgs)
    #这里仅仅取了1万张图片进行测试,由于显存限制,
    ims = imgs[:10000]
    random.shuffle(ims)
    train_num = int(len(ims)*split_ratio)
    val_num = int(len(ims)*(1-split_ratio)/2)

    train_set = ims[:train_num]
    val_set = ims[train_num:train_num+val_num]
    test_set = ims[-val_num:]

    move_file(train_set,image_root,txt_root,img_targe_file,label_target_file,mode='train')
    move_file(val_set,image_root,txt_root,img_targe_file,label_target_file,mode='val')
    move_file(test_set,image_root,txt_root,img_targe_file,label_target_file,mode='test')

def move_file(dataset,image_root,txt_root,img_targe_file,label_target_file,mode='train'):
    for img in tqdm(dataset):
        img_path = image_root + '/' + img
        txt_path = txt_root + '/' + img.replace('jpg','txt')
        img_targe_file_full = img_targe_file + '/' + mode
        label_target_file_full = label_target_file + '/' + mode


        shutil.copy(img_path, img_targe_file_full)
        shutil.copy(txt_path, label_target_file_full)
def validation():
    images = r'E:\datasets\keypoint_dataset\datasets\images'
    labels = r'E:\datasets\keypoint_dataset\datasets\labels'
    for mode in ['train','val','test']:
        img_path = images + '/' + mode
        label_path = labels + '/' + mode
        assert len(os.listdir(img_path)) == len(os.listdir(label_path)),f'{mode}数据划分验证失败'
        for img,lb in zip(os.listdir(img_path),os.listdir(label_path)):
            img_name = img.split('.')[0]
            lb_name = lb.split('.')[0]
            if img_name != lb_name:
                 assert '数据划分验证失败'
    print('数据划分验证成功!')
    pass

if __name__ == '__main__':
    root = 'E:/datasets/keypoint_dataset'
    image_root = 'E:/datasets/keypoint_dataset/images'
    json_root = 'E:/datasets/keypoint_dataset/labels'
    txt_root = root + '/'+ 'txt'
    #读取json文件
    data = read_json(json_root)
    #可视化
    # show(data,image_root)
    #json2yolo
    # json2yolo(data,txt_root)
    #split dataset
    # img_target_file = root + '/'+ 'datasets' + '/images'
    # label_target_file = root + '/'+ 'datasets' + '/labels'
    # split_dataset(image_root,txt_root,img_target_file,label_target_file,split_ratio=0.7)
    #validation验证
    validation()

6、数据集下载链接

数据集下载链接

相关推荐
AI街潜水的八角10 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光16 小时前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角1 天前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&1 天前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天2 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机2 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集
abments3 天前
C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测
开发语言·yolo·c#
Coovally AI模型快速验证3 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn
那年一路北3 天前
深入探究 YOLOv5:从优势到模型导出全方位解析
人工智能·yolo·目标跟踪
明月下4 天前
【数据分析】coco格式数据生成yolo数据可视化
yolo·信息可视化·数据分析