【数据集】Yolo人体关键点数据集处理

文章目录

1、介绍

人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识别、行为分析、人机交互等的前置任务。一般情况下可以将人体关键点检测细分为单人/多人关键点检测、2D/3D关键点检测,同时有算法在完成关键点检测之后还会进行关键点的跟踪,也被称为人体姿态跟踪。

本次要介绍的数据集是2D关键点检测数据集,数据集主要来自COCO2017,经过对COCO数据集JSON文件进行预处理提取人体关键点信息,一共提取10000 张人体姿态数据集,以及对应的必要信息,已经转化为Yolo格式存储。

2、数据集格式

复制代码
keypoint_dataset
	|
	|_______images
	|		  |_____000000000049.jpg
	|		  |_____ ......
	|_______labels
	|		  |_____000000000049.txt
	|		  |_____ ......		  

3 、COCO人体关键点示意图

下图中,共17个关节点(鼻子x1、眼睛x2、耳朵x2、肩部x2、肘部x2、手腕x2、髋部x2、膝关节x2、脚腕x2):

4、数据集预处理

这里数据集预处理主要包括5个内容,分别是read_jsonshowjson2yolosplit_datasetvalidation

4.1、读取JSON文件

python 复制代码
def read_json(json_path):
    d = defaultdict(list)
    for json_name in tqdm(os.listdir(json_path)):
        json_full_path = json_path + '/' + json_name
        with open(json_full_path, 'r', encoding='utf-8') as file:  
            data = json.load(file)
        image_name = data['image_name']
        # category = data['category']
        # width = data['width']
        # height = data['height']
        # keypoints = data['key_points']
        # bbox = data['bbox']
        image_id = image_name.split('.')[0]
        d[int(image_id)]= data 
    print(f'json 文件读取完成,一共{len(d.keys())}个数据')
    return d

4.2、可视化

python 复制代码
def visualization(ax,keypoints,bbox):
    #随机颜色
    c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
    #关键点之间的连线
    ls = [[15,13],[13,11],[16,14],[14,12],[11,12],[5,11],[6,12],[5,6],[5,7],
          [6,8],[7,9],[8,10],[1,2],[0,1],[0,2],[1,3],[2,4],[3,5],[4,6]]
    sks = np.array(ls)
    #获取关键点坐标x,y,v
    kp = np.array(keypoints)
    x = kp[0::3]
    y = kp[1::3]
    v = kp[2::3]
    for sk in sks:
        if np.all(v[sk]>0):
            # 画点之间的连接线
            plt.plot(x[sk],y[sk], linewidth=1, color=c)
    # 画点
    p = plt.plot(x[v>0], y[v>0],'o',markersize=4, markerfacecolor=c, markeredgecolor='k',markeredgewidth=1)
    p = plt.plot(x[v>1], y[v>1],'o',markersize=4, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)
    # 画矩形边界,多边形填充+矩形边界:
    x, y, w, h = bbox[0],bbox[1],bbox[2],bbox[3]
    ax.add_patch(Polygon(xy=[[x, y], [x, y+h], [x+w, y+h], [x+w, y]], color='k', alpha=0.3))
    ax.add_patch(Rectangle(xy=(x, y), width=w, height=h, fill=False, color=c, alpha=1))
    plt.plot(x + w/2,y+h/2,'*',markersize=5, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)

def show(data,image_root):
    for image_id in data.keys():

        img = io.imread('%s/%s' % (image_root, data[image_id]['image_name']))
        plt.axis('off')
        ax = plt.gca()
        for i in range(len(data[image_id]['key_points'])):
            visualization(ax, data[image_id]['key_points'][i], data[image_id]['bbox'][i])
        plt.imshow(img)
        plt.axis('off')
        plt.show()

4.3、JSON格式转Yolo格式

yolo标注格式为:类别 、标注框中心点(x,y)、长和宽(w,h),关键点坐标以及可见度(kx1,ky1,kv1,kx2,ky2,kv2...),然后并根据图片长宽进行归一化处理

python 复制代码
def json2yolo(data,txt_path):
    if not os.path.exists(txt_path):
        os.mkdir(txt_path)
    for image_id in tqdm(data.keys()):
        txt_name = data[image_id]['image_name'].split('.')[0]
        category = data[image_id]['category']
        width = data[image_id]['width']
        height = data[image_id]['height']
        keypoints = data[image_id]['key_points']
        bbox = data[image_id]['bbox']
        '''
        yolo标注格式
        类别 、标注框中心点、长和宽,关键点坐标以及可见度
        根据图片长高进行归一化处理
        '''
        for i in range(len(keypoints)):
            #对标注框进行预处理
            box = bbox[i]
            keypoint = keypoints[i]
            # print(keypoint)
            #x,y为左上角坐标,w,h为宽高
            x,y,w,h = box[0],box[1],box[2],box[3]
            xx = x + w/2
            yy = y + h/2
            #归一化
            xx,yy,ww,hh = xx/width,yy/height,w/width,h/height
            #关键点归一化
            proc_keypoint = []
            for p in range(0,len(keypoint),3):
                x,y,v = keypoint[p],keypoint[p+1],keypoint[p+2]
                kx,ky = x/width, y/height
                proc_keypoint.extend([kx,ky,v])
            #写入txt文件
            yolo_str = f'{category} {xx:.6f} {yy:.6f} {ww:.6f} {hh:.6f} '
            yolo_str = yolo_str + ' '.join([f'{i:.6f}' for i in proc_keypoint])
            
            with open(f'{txt_path}/{txt_name}.txt','a+') as f:
                f.write(yolo_str + '\n')
    print('转化为yolo txt格式完成!')

4.4、划分数据集

划分数据集格式为yolo需要的格式

python 复制代码
def split_dataset(image_root,txt_root,img_targe_file,label_target_file,split_ratio=0.6):
    imgs = os.listdir(image_root)
    import random
    random.seed(2024)
    random.shuffle(imgs)
    #这里仅仅取了1万张图片进行测试,由于显存限制,
    ims = imgs[:10000]
    random.shuffle(ims)
    train_num = int(len(ims)*split_ratio)
    val_num = int(len(ims)*(1-split_ratio)/2)

    train_set = ims[:train_num]
    val_set = ims[train_num:train_num+val_num]
    test_set = ims[-val_num:]

    move_file(train_set,image_root,txt_root,img_targe_file,label_target_file,mode='train')
    move_file(val_set,image_root,txt_root,img_targe_file,label_target_file,mode='val')
    move_file(test_set,image_root,txt_root,img_targe_file,label_target_file,mode='test')

def move_file(dataset,image_root,txt_root,img_targe_file,label_target_file,mode='train'):
    for img in tqdm(dataset):
        img_path = image_root + '/' + img
        txt_path = txt_root + '/' + img.replace('jpg','txt')
        img_targe_file_full = img_targe_file + '/' + mode
        label_target_file_full = label_target_file + '/' + mode


        shutil.copy(img_path, img_targe_file_full)
        shutil.copy(txt_path, label_target_file_full)

4.5、验证

python 复制代码
def validation():
    images = r'E:\datasets\keypoint_dataset\datasets\images'
    labels = r'E:\datasets\keypoint_dataset\datasets\labels'
    for mode in ['train','val','test']:
        img_path = images + '/' + mode
        label_path = labels + '/' + mode
        assert len(os.listdir(img_path)) == len(os.listdir(label_path)),f'{mode}数据划分验证失败'
        for img,lb in zip(os.listdir(img_path),os.listdir(label_path)):
            img_name = img.split('.')[0]
            lb_name = lb.split('.')[0]
            if img_name != lb_name:
                 assert '数据划分验证失败'
    print('数据划分验证成功!')
    pass

5、完整代码

python 复制代码
import json
from collections import defaultdict
import numpy as np
import os
from tqdm import tqdm
import shutil
from matplotlib import pyplot as plt
import skimage.io as io

from matplotlib.patches import Polygon,Rectangle
def visualization(ax,keypoints,bbox):
    #随机颜色
    c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
    #关键点之间的连线
    ls = [[15,13],[13,11],[16,14],[14,12],[11,12],[5,11],[6,12],[5,6],[5,7],
          [6,8],[7,9],[8,10],[1,2],[0,1],[0,2],[1,3],[2,4],[3,5],[4,6]]
    sks = np.array(ls)
    #获取关键点坐标x,y,v
    kp = np.array(keypoints)
    x = kp[0::3]
    y = kp[1::3]
    v = kp[2::3]
    for sk in sks:
        if np.all(v[sk]>0):
            # 画点之间的连接线
            plt.plot(x[sk],y[sk], linewidth=1, color=c)
    # 画点
    p = plt.plot(x[v>0], y[v>0],'o',markersize=4, markerfacecolor=c, markeredgecolor='k',markeredgewidth=1)
    p = plt.plot(x[v>1], y[v>1],'o',markersize=4, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)
    # 画矩形边界,多边形填充+矩形边界:
    x, y, w, h = bbox[0],bbox[1],bbox[2],bbox[3]
    ax.add_patch(Polygon(xy=[[x, y], [x, y+h], [x+w, y+h], [x+w, y]], color='k', alpha=0.3))
    ax.add_patch(Rectangle(xy=(x, y), width=w, height=h, fill=False, color=c, alpha=1))
    plt.plot(x + w/2,y+h/2,'*',markersize=5, markerfacecolor=c, markeredgecolor=c, markeredgewidth=1)

def read_json(json_path):
    d = defaultdict(list)
    
    for json_name in tqdm(os.listdir(json_path)):
        json_full_path = json_path + '/' + json_name
        with open(json_full_path, 'r', encoding='utf-8') as file:  
            data = json.load(file)
        image_name = data['image_name']
        # category = data['category']
        # width = data['width']
        # height = data['height']
        # keypoints = data['key_points']
        # bbox = data['bbox']
        image_id = image_name.split('.')[0]
        
        d[int(image_id)]= data 
    
    print(f'json 文件读取完成,一共{len(d.keys())}个数据')
    return d
def show(data,image_root):
    for image_id in data.keys():

        img = io.imread('%s/%s' % (image_root, data[image_id]['image_name']))
        plt.axis('off')
        ax = plt.gca()
        for i in range(len(data[image_id]['key_points'])):
            visualization(ax, data[image_id]['key_points'][i], data[image_id]['bbox'][i])
        plt.imshow(img)
        plt.axis('off')
        plt.show()
def json2yolo(data,txt_path):
    if not os.path.exists(txt_path):
        os.mkdir(txt_path)
    for image_id in tqdm(data.keys()):
        txt_name = data[image_id]['image_name'].split('.')[0]
        category = data[image_id]['category']
        width = data[image_id]['width']
        height = data[image_id]['height']
        keypoints = data[image_id]['key_points']
        bbox = data[image_id]['bbox']
        '''
        yolo标注格式
        类别 、标注框中心点、长和宽,关键点坐标以及可见度
        根据图片长高进行归一化处理
        '''
        for i in range(len(keypoints)):
            #对标注框进行预处理
            box = bbox[i]
            keypoint = keypoints[i]
            # print(keypoint)
            #x,y为左上角坐标,w,h为宽高
            x,y,w,h = box[0],box[1],box[2],box[3]
            xx = x + w/2
            yy = y + h/2
            #归一化
            xx,yy,ww,hh = xx/width,yy/height,w/width,h/height
            #关键点归一化
            proc_keypoint = []
            for p in range(0,len(keypoint),3):
                x,y,v = keypoint[p],keypoint[p+1],keypoint[p+2]
                kx,ky = x/width, y/height
                proc_keypoint.extend([kx,ky,v])
            #写入txt文件
            yolo_str = f'{category} {xx:.6f} {yy:.6f} {ww:.6f} {hh:.6f} '
            yolo_str = yolo_str + ' '.join([f'{i:.6f}' for i in proc_keypoint])
            
            with open(f'{txt_path}/{txt_name}.txt','a+') as f:
                f.write(yolo_str + '\n')
    print('转化为yolo txt格式完成!')

def split_dataset(image_root,txt_root,img_targe_file,label_target_file,split_ratio=0.6):
    imgs = os.listdir(image_root)
    import random
    random.seed(2024)
    random.shuffle(imgs)
    #这里仅仅取了1万张图片进行测试,由于显存限制,
    ims = imgs[:10000]
    random.shuffle(ims)
    train_num = int(len(ims)*split_ratio)
    val_num = int(len(ims)*(1-split_ratio)/2)

    train_set = ims[:train_num]
    val_set = ims[train_num:train_num+val_num]
    test_set = ims[-val_num:]

    move_file(train_set,image_root,txt_root,img_targe_file,label_target_file,mode='train')
    move_file(val_set,image_root,txt_root,img_targe_file,label_target_file,mode='val')
    move_file(test_set,image_root,txt_root,img_targe_file,label_target_file,mode='test')

def move_file(dataset,image_root,txt_root,img_targe_file,label_target_file,mode='train'):
    for img in tqdm(dataset):
        img_path = image_root + '/' + img
        txt_path = txt_root + '/' + img.replace('jpg','txt')
        img_targe_file_full = img_targe_file + '/' + mode
        label_target_file_full = label_target_file + '/' + mode


        shutil.copy(img_path, img_targe_file_full)
        shutil.copy(txt_path, label_target_file_full)
def validation():
    images = r'E:\datasets\keypoint_dataset\datasets\images'
    labels = r'E:\datasets\keypoint_dataset\datasets\labels'
    for mode in ['train','val','test']:
        img_path = images + '/' + mode
        label_path = labels + '/' + mode
        assert len(os.listdir(img_path)) == len(os.listdir(label_path)),f'{mode}数据划分验证失败'
        for img,lb in zip(os.listdir(img_path),os.listdir(label_path)):
            img_name = img.split('.')[0]
            lb_name = lb.split('.')[0]
            if img_name != lb_name:
                 assert '数据划分验证失败'
    print('数据划分验证成功!')
    pass

if __name__ == '__main__':
    root = 'E:/datasets/keypoint_dataset'
    image_root = 'E:/datasets/keypoint_dataset/images'
    json_root = 'E:/datasets/keypoint_dataset/labels'
    txt_root = root + '/'+ 'txt'
    #读取json文件
    data = read_json(json_root)
    #可视化
    # show(data,image_root)
    #json2yolo
    # json2yolo(data,txt_root)
    #split dataset
    # img_target_file = root + '/'+ 'datasets' + '/images'
    # label_target_file = root + '/'+ 'datasets' + '/labels'
    # split_dataset(image_root,txt_root,img_target_file,label_target_file,split_ratio=0.7)
    #validation验证
    validation()

6、数据集下载链接

数据集下载链接

相关推荐
智驱力人工智能34 分钟前
实线变道检测 高架道路安全治理的工程化实践 隧道压实线监测方案 城市快速路压实线实时预警 压实线与车牌识别联动方案
人工智能·opencv·算法·安全·yolo·边缘计算
2501_941601213 小时前
火箭飞行目标检测与追踪_YOLOv8-ACT改进实战
yolo·目标检测·目标跟踪
ZCXZ12385296a16 小时前
基于YOLOv26的机器人追踪器检测与跟随系统开发实战
yolo·机器人
前网易架构师-高司机16 小时前
带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%
yolo·数据集··大块煤
2501_9421917720 小时前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
Faker66363aaa21 小时前
GSM微波天线设备识别与分类_YOLOv26模型实现_1
yolo·分类·数据挖掘
机 _ 长21 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
给算法爸爸上香1 天前
yolo目标检测线程池高性能视频tensorrt推理(每秒1000+帧)
yolo·目标检测·音视频·线程池·tensorrt
2501_941507941 天前
【目标检测改进】基于YOLOv26的公路护栏与灯杆检测识别系统
yolo·目标检测·目标跟踪
2501_936146041 天前
生活垃圾智能分类与识别_YOLOv26实现金属玻璃塑料垃圾精确检测_1
yolo·分类·生活