tensorRT配合triton部署模型

文章目录

一、onnx

1)onnx格式介绍

2)onnx模型网络图认识

initializer:

拓扑关系:先conv,后relu

3)onnx关键数据结构(边+算子=》组成图=》组成模型)

3.1 边

3.2 算子

3.3 模型

3.4 图

4)onnx原生API搭建onnx模型

  • 指定节点

    ①resize节点

    ②conv节点

    ③Add节点

  • 步骤

    ①定义tensor节点,定义输入、输出

    ②制作节点

    ③根据节点制作图和模型

    ④保存成onnx

  • 代码

python 复制代码
import onnx
from onnx import helper
from onnx import TensorProto
import onnxruntime
import numpy as np
# define tensor
input = helper.make_tensor_value_info('input', TensorProto.FLOAT, [1,3,256, 256])
roi = helper.make_tensor_value_info('roi', TensorProto.FLOAT, [])
scales = helper.make_tensor_value_info('scales', TensorProto.FLOAT, [4])
conv_input = helper.make_tensor_value_info('conv_input', TensorProto.FLOAT, [1,3,512,512])
conv_weight = helper.make_tensor_value_info('conv_weight', TensorProto.FLOAT, [32,3,3,3])
conv_bias = helper.make_tensor_value_info('conv_bias', TensorProto.FLOAT, [32])
conv_output = helper.make_tensor_value_info('conv_output', TensorProto.FLOAT, [1,32,512,512])
add_input = helper.make_tensor_value_info('add_input', TensorProto.FLOAT, [1])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1,32,512,512])

# make node
resize_node = helper.make_node("Resize", ['input','roi','scales'], ['conv_input'], name='resize')
conv_node = helper.make_node("Conv", ['conv_input','conv_weight','conv_bias'], ['conv_output'], name='conv',strides=[1, 1],pads=[1, 1, 1, 1])
add_node = helper.make_node('Add', ['conv_output','add_input'], ['output'], name='add')

# make graph
graph = helper.make_graph([resize_node,conv_node,add_node],'resize_conv_add_graph',inputs=[input,roi,scales,conv_weight,conv_bias,add_input],outputs=[output])

# make model
model = helper.make_model(graph, opset_imports=[helper.make_opsetid('', 21)]) # 构建模型
onnx.checker.check_model(model)  # 检测模型的准确性
  • 输出的模型结构
shell 复制代码
ir_version: 11
graph {
  node {
    input: "input"
    input: "roi"
    input: "scales"
    output: "conv_input"
    name: "resize"
    op_type: "Resize"
  }
  node {
    input: "conv_input"
    input: "conv_weight"
    input: "conv_bias"
    output: "conv_output"
    name: "conv"
    op_type: "Conv"
    attribute {
      name: "pads"
      ints: 1
      ints: 1
      ints: 1
      ints: 1
      type: INTS
    }
    attribute {
      name: "strides"
      ints: 1
      ints: 1
      type: INTS
    }
  }
  node {
    input: "conv_output"
    input: "add_input"
    output: "output"
    name: "add"
    op_type: "Add"
  }
  name: "resize_conv_add_graph"
  input {
    name: "input"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 1
          }
          dim {
            dim_value: 3
          }
          dim {
            dim_value: 256
          }
          dim {
            dim_value: 256
          }
        }
      }
    }
  }
  input {
    name: "roi"
    type {
      tensor_type {
        elem_type: 1
        shape {
        }
      }
    }
  }
  input {
    name: "scales"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 4
          }
        }
      }
    }
  }
  input {
    name: "conv_weight"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 32
          }
          dim {
            dim_value: 3
          }
          dim {
            dim_value: 3
          }
          dim {
            dim_value: 3
          }
        }
      }
    }
  }
  input {
    name: "conv_bias"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 32
          }
        }
      }
    }
  }
  input {
    name: "add_input"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 1
          }
        }
      }
    }
  }
  output {
    name: "output"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 1
          }
          dim {
            dim_value: 32
          }
          dim {
            dim_value: 512
          }
          dim {
            dim_value: 512
          }
        }
      }
    }
  }
}
opset_import {
  domain: ""
  version: 21
}

5)onnx模型推理

6)dump模型,输出onnx各算子信息

  • 代码
python 复制代码
"""
打印onnx节点信息
"""
import onnx
import onnxruntime as rt
import numpy as np
 
# 加载ONNX模型
model_path = 'resize_conv_add.onnx'
onnx_model = onnx.load(model_path)
session = rt.InferenceSession(model_path) #类似于tf.Session
input_name = session.get_inputs()[0].name
roi_name = session.get_inputs()[1].name
scales_name = session.get_inputs()[2].name
conv_weight_name = session.get_inputs()[3].name
conv_bias_name = session.get_inputs()[4].name
add_input_name = session.get_inputs()[5].name
output_name = session.get_outputs()[0].name
intermediate_layer_names = [onnx_model.graph.node[i].name for i in range(len(onnx_model.graph.node))]
print(f"input_name:{input_name}, conv_weight_name: {conv_weight_name}")
print('node=',onnx_model.graph.node)
for node in onnx_model.graph.node:
    print('node_name=',node.name)
    print('node_input=',node.input)
    print('node_output=',node.output)

7)onnx模型实用工具: onnx graphsurgeon

8)onnx模型实用工具: onnx simplier

9)onnx与TensorRT模型部署的前后纠葛

相关推荐
2501_9418372628 分钟前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
极客小云2 小时前
【基于 PyQt6 的红外与可见光图像配准工具开发实战】
c语言·python·yolo·目标检测
GatiArt雷4 小时前
基于YOLOv8的轻量化AI目标检测在嵌入式设备上的落地实现
人工智能·yolo·目标检测
Katecat996634 小时前
使用YOLOv26实现乌鸦鸽子麻雀等城市鸟类自动检测与分类
人工智能·yolo·分类
Dingdangcat867 小时前
YOLOv26_数字万用表端口连接检测与识别_基于深度学习的自动识别系统
人工智能·深度学习·yolo
deng12047 小时前
【yolov1:开启目标检测的全新纪元】
人工智能·yolo·目标检测
KmjJgWeb9 小时前
基于YOLOv26的数字体温计检测与温度读取系统_2
人工智能·yolo·目标跟踪
LeeeX!10 小时前
YOLO12全面解析与安卓平台NCNN部署实战:高效注意力机制的落地实践(待更新)
深度学习·yolo·视觉检测·边缘计算
wfeqhfxz258878210 小时前
铁路轨道部件故障检测与识别_YOLOv26模型实现与应用_1
yolo
Liue6123123112 小时前
瓦楞纸箱缺陷检测与分类——YOLOv26实战应用详解_1
yolo·分类·数据挖掘