基于yolov8的车流量跟踪计数 支持自定义检测区域的yolov8车流量跟踪统计

基于yolov8的车流量跟踪计数 支持自定义检测区域的yolov8车流量跟踪统计

传统的基于yolo的跟踪计数都是把区域写固定,把视频文件写固定,换一个视频画面基本就不能检测了,本系统支持用户根据自己待检测的视频划定区域,然后进行跟踪检测。

区域你来定!文件你来选!

技术栈:yolov8+byte-tracker多目标跟踪算法

检测精度高

可识别统计 小汽车 公交车 大卡车三类 三种类别不同区域分别统计

新增文件选择GUI界面,选择你想要识别的任意视频

该项目使用YOLOv8作为基础的检测模型,并结合了目标跟踪算法来追踪车辆。此外,它还支持用户自定义检测区域,这意味着用户可以根据需求划定特定的区域来进行车辆计数。

关键组件

  1. YOLOv8:YOLOv8是一个先进的目标检测框架,它可以快速准确地识别图像中的物体。在本项目中,它主要用于检测车辆。

  2. 目标跟踪算法:除了检测之外,还需要跟踪算法来保持对同一辆车的连续追踪,从而准确计数。常用的跟踪算法有DeepSORT、ByteTrack等。

  3. 自定义检测区域:允许用户在视频帧中划定感兴趣区域(Region of Interest, ROI),只对这些区域内的车辆进行计数。

技术栈

  • 编程语言:通常使用Python。
  • 框架:YOLOv8,可能使用PyTorch或其他深度学习框架。
  • 工具库:OpenCV用于图像处理,NumPy用于数值计算。

工作流程

  1. 数据准备

    • 收集和标注包含车辆的视频数据。
    • 标注数据集中的车辆类型(如汽车、卡车、摩托车等)。
  2. 模型训练

    • 使用YOLOv8训练车辆检测模型。
    • 调整模型参数以优化检测精度。
  3. 目标跟踪

    • 在检测的基础上,应用跟踪算法来关联连续帧之间的相同车辆。
    • 更新车辆轨迹,确保连续性。
  4. 自定义检测区域

    • 用户可以通过图形界面或配置文件划定ROI。
    • 对划定的区域内通过的车辆进行计数。
  5. 部署应用

    • 将训练好的模型和跟踪算法部署到实际的应用环境中。
    • 连接到实时视频流或处理存储的视频文件。

应用场景

  • 交通监控:实时监控主要路口和路段的车流量。
  • 智能停车系统:统计停车场的车辆进出情况。
  • 事故预防:通过对特定区域的车流量统计,帮助提前预警可能的交通拥堵或事故。

示例代码

以下是一个简化的代码示例,展示如何使用YOLOv8进行车辆检测和跟踪的基本流程:

import cv2
import torch
from ultralytics import YOLO

# 加载预训练的YOLOv8模型
model = YOLO('yolov8m.pt')

# 打开视频文件
video_path = 'path/to/video.mp4'
cap = cv2.VideoCapture(video_path)

# 设置ROI
roi = [(100, 100), (300, 100), (300, 300), (100, 300)]

# 初始化跟踪器
tracker = ...

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    
    # 进行车辆检测
    results = model(frame)
    
    # 提取检测结果
    boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
    classes = results[0].boxes.cls.cpu().numpy()
    
    # 进行目标跟踪
    tracks = tracker.update(boxes, classes)
    
    # 绘制检测框和跟踪ID
    for track in tracks:
        x1, y1, x2, y2 = track['box']
        label = f"{track['class_name']} {track['track_id']}"
        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
        cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    
    # 显示视频帧
    cv2.imshow("Vehicle Tracking", frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
相关推荐
AI莫大猫4 小时前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
KeepThinking!7 小时前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
前网易架构师-高司机10 小时前
游泳溺水识别数据集,对9984张原始图片进行YOLO,COCO JSON, VOC XML 格式的标注,平均识别率在91.7%以上
yolo·溺水·游泳溺水·游泳安全
发呆小天才O.oᯅ11 小时前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
深度学习lover12 小时前
<项目代码>YOLO Visdrone航拍目标识别<目标检测>
python·yolo·目标检测·计算机视觉·visdrone航拍目标识别
深度学习lover1 天前
[项目代码] YOLOv8 遥感航拍飞机和船舶识别 [目标检测]
python·yolo·目标检测·计算机视觉·遥感航拍飞机和船舶识别
学习BigData1 天前
【使用PyQt5和YOLOv11开发电脑屏幕区域的实时分类GUI】——选择检测区域
qt·yolo·分类
红色的山茶花1 天前
YOLOv9-0.1部分代码阅读笔记-dataloaders.py
笔记·深度学习·yolo
千天夜1 天前
YOLO系列正传(三)神经网络的反向传播(back propagation)与公式推导
人工智能·python·深度学习·神经网络·学习·yolo·卷积神经网络
红色的山茶花2 天前
YOLOv9-0.1部分代码阅读笔记-downloads.py
笔记·深度学习·yolo