基于yolov8的车流量跟踪计数 支持自定义检测区域的yolov8车流量跟踪统计

基于yolov8的车流量跟踪计数 支持自定义检测区域的yolov8车流量跟踪统计

传统的基于yolo的跟踪计数都是把区域写固定,把视频文件写固定,换一个视频画面基本就不能检测了,本系统支持用户根据自己待检测的视频划定区域,然后进行跟踪检测。

区域你来定!文件你来选!

技术栈:yolov8+byte-tracker多目标跟踪算法

检测精度高

可识别统计 小汽车 公交车 大卡车三类 三种类别不同区域分别统计

新增文件选择GUI界面,选择你想要识别的任意视频

该项目使用YOLOv8作为基础的检测模型,并结合了目标跟踪算法来追踪车辆。此外,它还支持用户自定义检测区域,这意味着用户可以根据需求划定特定的区域来进行车辆计数。

关键组件

  1. YOLOv8:YOLOv8是一个先进的目标检测框架,它可以快速准确地识别图像中的物体。在本项目中,它主要用于检测车辆。

  2. 目标跟踪算法:除了检测之外,还需要跟踪算法来保持对同一辆车的连续追踪,从而准确计数。常用的跟踪算法有DeepSORT、ByteTrack等。

  3. 自定义检测区域:允许用户在视频帧中划定感兴趣区域(Region of Interest, ROI),只对这些区域内的车辆进行计数。

技术栈

  • 编程语言:通常使用Python。
  • 框架:YOLOv8,可能使用PyTorch或其他深度学习框架。
  • 工具库:OpenCV用于图像处理,NumPy用于数值计算。

工作流程

  1. 数据准备

    • 收集和标注包含车辆的视频数据。
    • 标注数据集中的车辆类型(如汽车、卡车、摩托车等)。
  2. 模型训练

    • 使用YOLOv8训练车辆检测模型。
    • 调整模型参数以优化检测精度。
  3. 目标跟踪

    • 在检测的基础上,应用跟踪算法来关联连续帧之间的相同车辆。
    • 更新车辆轨迹,确保连续性。
  4. 自定义检测区域

    • 用户可以通过图形界面或配置文件划定ROI。
    • 对划定的区域内通过的车辆进行计数。
  5. 部署应用

    • 将训练好的模型和跟踪算法部署到实际的应用环境中。
    • 连接到实时视频流或处理存储的视频文件。

应用场景

  • 交通监控:实时监控主要路口和路段的车流量。
  • 智能停车系统:统计停车场的车辆进出情况。
  • 事故预防:通过对特定区域的车流量统计,帮助提前预警可能的交通拥堵或事故。

示例代码

以下是一个简化的代码示例,展示如何使用YOLOv8进行车辆检测和跟踪的基本流程:

复制代码
import cv2
import torch
from ultralytics import YOLO

# 加载预训练的YOLOv8模型
model = YOLO('yolov8m.pt')

# 打开视频文件
video_path = 'path/to/video.mp4'
cap = cv2.VideoCapture(video_path)

# 设置ROI
roi = [(100, 100), (300, 100), (300, 300), (100, 300)]

# 初始化跟踪器
tracker = ...

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    
    # 进行车辆检测
    results = model(frame)
    
    # 提取检测结果
    boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
    classes = results[0].boxes.cls.cpu().numpy()
    
    # 进行目标跟踪
    tracks = tracker.update(boxes, classes)
    
    # 绘制检测框和跟踪ID
    for track in tracks:
        x1, y1, x2, y2 = track['box']
        label = f"{track['class_name']} {track['track_id']}"
        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
        cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    
    # 显示视频帧
    cv2.imshow("Vehicle Tracking", frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
相关推荐
要努力啊啊啊4 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
加油吧zkf10 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
要努力啊啊啊2 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx2 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
Edward-tan3 天前
基于 opencv+yolov8+easyocr的车牌追踪识别
python·opencv·ocr·yolov8
学技术的大胜嗷3 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶4 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币4 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580084 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter13 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测