NLP_情感分类_机器学习方案

文章目录


项目背景

项目的目的,是为了对情感评论数据集进行预测打标。在训练之前,需要对数据进行数据清洗环节,前面已对数据进行清洗,详情可移步至NLP_情感分类_数据清洗

下面对已清洗的数据集,用机器学习方案进行处理

数据清洗

导包

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pickle
import numpy as np
import gc
#import swifter
from sklearn.neural_network import MLPClassifier
import os
from sklearn.metrics import accuracy_score,f1_score,recall_score,precision_score
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm

导入数据

python 复制代码
df = pd.read_csv('data/sentiment_analysis_clean.csv')
df = df.dropna()

切分评论及标签

python 复制代码
X_tfidf = df['text']
y_tfidf = df['label']

TF-IDF

TfidfVectorizer是用于文本处理的重要工具之一,它将文本数据转换成数值向量形式,以便于后续的机器学习模型进行训练。TF-IDF代表Term Frequency-Inverse Document Frequency,即词频-逆文档频率算法。

TF-IDFVectorizer可以根据应用场景灵活地控制特征提取的过程,提高文本分析的效率和精度。

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数

IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

构造TF-IDF特征

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

vec_tfidf = TfidfVectorizer(use_idf=True, smooth_idf=True, norm=None, max_features=1000)
array_TFIDF = vec_tfidf.fit_transform(X_tfidf)

数据切分

python 复制代码
from sklearn.model_selection import train_test_split, StratifiedKFold
# 这里指定了random_state是为了保证每次切分数据集的结果都是一样的
Xidf_train, Xidf_test, yidf_train, yidf_test = train_test_split(array_TFIDF, y_tfidf,test_size=0.2,random_state=2024)
Xidf_train = Xidf_train.toarray()
Xidf_test = Xidf_test.toarray()

del df,array_TFIDF
gc.collect()

模型训练

python 复制代码
def train_model(model, X_train, X_test, y_train, y_test):
    
    dic = {'lr':'Logistic Regression',
          'nb':'Naive Bayes',
          'svm':'Support Vector Machine',
          'dt':'Decision Tree',
          'rf':'Random Forest',
          'lgb':'LightGBM'}
    
    train_acc, test_acc = [], []
    
    if model == 'lr':
        clf = LogisticRegression(C=0.01, solver='liblinear')
    elif model == 'nb':
        clf = MultinomialNB(alpha=100)
    elif model == 'svm':
        clf = svm.LinearSVC(C=0.01)
    elif model == 'dt':
        clf = DecisionTreeClassifier(max_depth=100, min_samples_split= 2)
    elif model == 'rf':
        clf = RandomForestClassifier(max_depth=100,min_samples_split=5)
    elif model == 'lgb':
        clf = LGBMClassifier(learning_rate=1.0)
    else:
        print('Model doesn\'t exist')

    clf.fit(X_train, y_train)

    # predict using train data
    train_pred = clf.predict(X_train)
    train_acc = accuracy_score(y_train, train_pred)
    
    # predict using test data
    test_pred = clf.predict(X_test)
    test_acc = accuracy_score(y_test, test_pred)   

    print()
    print("Model: ", dic[model])
    print("Training accuracy: {}".format(train_acc))
    print("Test accuracy: {}".format(test_acc))
    print()

    return {
        'model_name':dic[model],
        'Train Accuracy':train_acc,
        'Test Accuracy':test_acc
    }

查看结果

python 复制代码
metric_df = pd.DataFrame(columns=['model_name','Train Accuracy','Test Accuracy'])
for model in ['lr', 'nb', 'svm', 'dt', 'rf', 'lgb']:
    metric = train_model(model ,Xidf_train, Xidf_test, yidf_train, yidf_test)
    # 将metric转换成一个DataFrame
    metric_df = pd.concat([metric_df, pd.DataFrame([metric])], ignore_index=True)
python 复制代码
metric_df

同类型项目

阿里云-零基础入门NLP【基于机器学习的文本分类】

阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】

也可以参考进行学习


学习的参考资料:

深度之眼

相关推荐
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
rgb2gray2 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
(; ̄ェ ̄)。2 小时前
机器学习入门(二十一)特征工程
人工智能·机器学习
MaoziShan2 小时前
CMU Subword Modeling | 02 Signs, Minimal Signs, and Compositionality
人工智能·自然语言处理
高洁015 小时前
大模型架构演进:从Transformer到MoE
python·深度学习·机器学习·数据挖掘·知识图谱
谁不学习揍谁!5 小时前
基于python机器学习算法的农作物产量可视化分析预测系统(完整系统源码+数据库+详细文档+论文+详细部署教程+答辩PPT)获取方式
python·算法·机器学习
爱寂寞的时光5 小时前
GPTQ原理浅析及简单实现
人工智能·机器学习
FL16238631298 小时前
智慧医疗手术工具医疗器械检测数据集VOC+YOLO格式2273张15类别
人工智能·yolo·机器学习
何伯特8 小时前
越野环境自动驾驶状态机:基于TinyFSM的工程实践
人工智能·机器学习·自动驾驶
lisw058 小时前
Spec-Driven Development,规格驱动开发:程序开发新模式!
人工智能·驱动开发·机器学习