NLP_情感分类_机器学习方案

文章目录


项目背景

项目的目的,是为了对情感评论数据集进行预测打标。在训练之前,需要对数据进行数据清洗环节,前面已对数据进行清洗,详情可移步至NLP_情感分类_数据清洗

下面对已清洗的数据集,用机器学习方案进行处理

数据清洗

导包

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pickle
import numpy as np
import gc
#import swifter
from sklearn.neural_network import MLPClassifier
import os
from sklearn.metrics import accuracy_score,f1_score,recall_score,precision_score
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm

导入数据

python 复制代码
df = pd.read_csv('data/sentiment_analysis_clean.csv')
df = df.dropna()

切分评论及标签

python 复制代码
X_tfidf = df['text']
y_tfidf = df['label']

TF-IDF

TfidfVectorizer是用于文本处理的重要工具之一,它将文本数据转换成数值向量形式,以便于后续的机器学习模型进行训练。TF-IDF代表Term Frequency-Inverse Document Frequency,即词频-逆文档频率算法。

TF-IDFVectorizer可以根据应用场景灵活地控制特征提取的过程,提高文本分析的效率和精度。

TF-IDF 分数由两部分组成:第一部分是词语频率(Term Frequency),第二部分是逆文档频率(Inverse Document Frequency)。其中计算语料库中文档总数除以含有该词语的文档数量,然后再取对数就是逆文档频率。

TF(t)= 该词语在当前文档出现的次数 / 当前文档中词语的总数

IDF(t)= log_e(文档总数 / 出现该词语的文档总数)

构造TF-IDF特征

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

vec_tfidf = TfidfVectorizer(use_idf=True, smooth_idf=True, norm=None, max_features=1000)
array_TFIDF = vec_tfidf.fit_transform(X_tfidf)

数据切分

python 复制代码
from sklearn.model_selection import train_test_split, StratifiedKFold
# 这里指定了random_state是为了保证每次切分数据集的结果都是一样的
Xidf_train, Xidf_test, yidf_train, yidf_test = train_test_split(array_TFIDF, y_tfidf,test_size=0.2,random_state=2024)
Xidf_train = Xidf_train.toarray()
Xidf_test = Xidf_test.toarray()

del df,array_TFIDF
gc.collect()

模型训练

python 复制代码
def train_model(model, X_train, X_test, y_train, y_test):
    
    dic = {'lr':'Logistic Regression',
          'nb':'Naive Bayes',
          'svm':'Support Vector Machine',
          'dt':'Decision Tree',
          'rf':'Random Forest',
          'lgb':'LightGBM'}
    
    train_acc, test_acc = [], []
    
    if model == 'lr':
        clf = LogisticRegression(C=0.01, solver='liblinear')
    elif model == 'nb':
        clf = MultinomialNB(alpha=100)
    elif model == 'svm':
        clf = svm.LinearSVC(C=0.01)
    elif model == 'dt':
        clf = DecisionTreeClassifier(max_depth=100, min_samples_split= 2)
    elif model == 'rf':
        clf = RandomForestClassifier(max_depth=100,min_samples_split=5)
    elif model == 'lgb':
        clf = LGBMClassifier(learning_rate=1.0)
    else:
        print('Model doesn\'t exist')

    clf.fit(X_train, y_train)

    # predict using train data
    train_pred = clf.predict(X_train)
    train_acc = accuracy_score(y_train, train_pred)
    
    # predict using test data
    test_pred = clf.predict(X_test)
    test_acc = accuracy_score(y_test, test_pred)   

    print()
    print("Model: ", dic[model])
    print("Training accuracy: {}".format(train_acc))
    print("Test accuracy: {}".format(test_acc))
    print()

    return {
        'model_name':dic[model],
        'Train Accuracy':train_acc,
        'Test Accuracy':test_acc
    }

查看结果

python 复制代码
metric_df = pd.DataFrame(columns=['model_name','Train Accuracy','Test Accuracy'])
for model in ['lr', 'nb', 'svm', 'dt', 'rf', 'lgb']:
    metric = train_model(model ,Xidf_train, Xidf_test, yidf_train, yidf_test)
    # 将metric转换成一个DataFrame
    metric_df = pd.concat([metric_df, pd.DataFrame([metric])], ignore_index=True)
python 复制代码
metric_df

同类型项目

阿里云-零基础入门NLP【基于机器学习的文本分类】

阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】

也可以参考进行学习


学习的参考资料:

深度之眼

相关推荐
再不会python就不礼貌了29 分钟前
Ollama 0.4 发布!支持 Llama 3.2 Vision,实现多模态 RAG
人工智能·学习·机器学习·ai·开源·产品经理·llama
DK221511 小时前
机器学习系列-----主成分分析(PCA)
人工智能·算法·机器学习
正义的彬彬侠1 小时前
XGBoost算法Python代码实现
python·决策树·机器学习·numpy·集成学习·boosting·xgboost
狂奔solar2 小时前
yelp数据集上试验SVD,SVDPP,PMF,NMF 推荐算法
人工智能·机器学习·推荐算法
武子康2 小时前
大数据-216 数据挖掘 机器学习理论 - KMeans 基于轮廓系数来选择 n_clusters
大数据·人工智能·机器学习·数据挖掘·回归·scikit-learn·kmeans
一条测试老狗3 小时前
【科普小白】LLM大语言模型的基本原理
人工智能·语言模型·自然语言处理
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+大模型动漫推荐系统 动漫视频推荐系统 机器学习 协同过滤推荐算法 bilibili动漫爬虫 数据可视化 数据分析 大数据毕业设计
大数据·爬虫·python·机器学习·课程设计·数据可视化·推荐算法
宋一诺334 小时前
机器学习—TensorFlow实现
人工智能·机器学习·tensorflow
Troc_wangpeng4 小时前
补一下 二维 平面直角坐标系 到三维
机器学习
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-数据的种类
人工智能·python·机器学习·数据挖掘