【HBZ分享】高并发下如何设计缓存来提升系统性能?

普通模式

  1. 普通模式即前段调用后端接口,然后后端先查缓存, 查不到的情况下再查数据库,然后把数据库中的内容放到缓存中。
  2. 瓶颈:瓶颈在于tomcat的性能,一般并发可以,面临海量并发冲击,tomcat就显得心有余而力不足了。

主角1: Nginx + Lua + Redis模式

  1. 通过Lua脚本二次开发Nginx,使得nginx可以直连redis获取数据,nginx的单节点性能可达到10W / s 的查询。
  2. lua脚本可以直接连redis,同时也可以直接连mysql,当redis没有数据的时候,即可以通过后端查mysql,也可以直连mysql查询,然后再放入到redis中,具体就看怎么设计了
  3. 缺点:做redis和mysql数据同步时,还需要自行写逻辑,以及还要维护不同应用程序多个key的情况,并且一致性问题也会有, 增加开发复杂度

主角2: Nginx + Lua + Redis + Cancel模式

  1. 这个比主角1多了个cancel,这个cancel会读取mysql server的binlog日志,然后发送到Kafka或者Rabbitmq中, 在使用java进行监听Kafka,然后把kafka的内容进行解析,更新到redis缓存即可。
  2. 然后nginx依然结合lua脚本,直接连radis即可,并且无需格外考虑Redis如果不存在是否要从数据库查询,因为只要数据库数据有变动,cancel就会监听到,然后把变动的数据发送到kafka,后端监听kafka会自动把数据更新到缓存中。
  3. 这种方案的数据同步全程无需写多余的逻辑代码,只需要监听cancel发送到kafka中的数据即可,然后做一个更新,极大地减少开发复杂度,并且也更能够缩短数据不一致性的时间间隔。
  4. 缺点:链路更加复杂,要确保Cancel的可用性,适合超高并发的大型项目下使用。并且依然会存在一部分数据不一致性问题。

有关数据一致性的问题,是否有解决方案能够达到完全一致性?

答案: 只要使用了缓存,就必不可能达到强一致性,没有任何方案能做到,缓存和DB之前永远存在着一层网络交互,所以就永远不可能实现强一致性。

相关推荐
大家都说我身材好10 分钟前
Spring缓存注解深度实战:3大核心注解解锁高并发系统性能优化‌
spring·缓存·性能优化
Pasregret5 小时前
多级缓存架构深度解析:从设计原理到生产实践
缓存·架构
我的golang之路果然有问题6 小时前
快速了解redis,个人笔记
数据库·经验分享·redis·笔记·学习·缓存·内存
道友老李7 小时前
【存储中间件】Redis核心技术与实战(五):Redis缓存使用问题(BigKey、数据倾斜、Redis脑裂、多级缓存)、互联网大厂中的Redis
redis·缓存·中间件
绿算技术15 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
zru_960220 小时前
Docker 部署 Redis:快速搭建高效缓存服务
redis·缓存·docker
axinawang21 小时前
springboot整合redis实现缓存
spring boot·redis·缓存
for621 天前
本地缓存大杀器-Caffeine
缓存·caffeine·本地缓存
听闻风很好吃1 天前
Redis高级数据类型解析(二)——Set、Sorted Set与Geo实战指南
数据库·redis·缓存
陈大大陈1 天前
基于 C++ 的用户认证系统开发:从注册登录到Redis 缓存优化
java·linux·开发语言·数据结构·c++·算法·缓存