Mac平台M1PRO芯片MiniCPM-V-2.6网页部署跑通

Mac平台M1PRO芯片MiniCPM-V-2.6网页部署跑通

契机

2.6的小钢炮可以输入视频了,我必须拉到本地跑跑。主要解决2.6版本默认绑定flash_atten问题,pip install flash_attn也无法安装,因为强制依赖cuda。主要解决的就是这个问题,还有 BFloat16 is not supported on MPS问题解决。

环境

解决问题

bash 复制代码
#拉下这个仓库
git clone [https://github.com/OpenBMB/MiniCPM-V.git](https://github.com/OpenBMB/MiniCPM-V.git) 

#把requirements.txt安装下
#modelscope需要手动安装
pip install http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/modelscope_studio-0.4.0.9-py3-none-any.whl
#dcord如果安装有问题,参考我LAVIS博客

#找到根目录web_demo_2.6.py运行
#首先添加环境变量,mps参数,见下图
--device mps
PYTORCH_ENABLE_MPS_FALLBACK=1
bash 复制代码
#第一次运行web_demo_2.6.py报错如下
ImportError: This modeling file requires the following packages that were not found in your environment: flash_attn. Run `pip install flash_attn`

#直接修改代码
from typing import Union
from transformers.dynamic_module_utils import get_imports
from unittest.mock import patch
# fix the imports
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
    imports = get_imports(filename)
    if not torch.cuda.is_available() and "flash_attn" in imports:
        imports.remove("flash_attn")
    return imports

#79行左右修改为
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
    model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
    model = model.to(device=device)

完整代码如下

python 复制代码
#!/usr/bin/env python
# encoding: utf-8
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import io
import os
import copy
import requests
import base64
import json
import traceback
import re
import modelscope_studio as mgr
from typing import Union
from transformers.dynamic_module_utils import get_imports
from unittest.mock import patch

# README, How to run demo on different devices

# For Nvidia GPUs.
# python web_demo_2.6.py --device cuda

# For Mac with MPS (Apple silicon or AMD GPUs).
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.6.py --device mps

# Argparser
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus')
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']

# fix the imports
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
    imports = get_imports(filename)
    if not torch.cuda.is_available() and "flash_attn" in imports:
        imports.remove("flash_attn")
    return imports

# Load model
model_path = 'openbmb/MiniCPM-V-2_6'
if 'int4' in model_path:
    if device == 'mps':
        print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
        exit()
    model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
else:
    if args.multi_gpus:
        from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map
        with init_empty_weights():
            model = AutoModel.from_pretrained(model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
        device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"},
            no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer'])
        device_id = device_map["llm.model.embed_tokens"]
        device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device
        device_map["vpm"] = device_id
        device_map["resampler"] = device_id
        device_id2 = device_map["llm.model.layers.26"]
        device_map["llm.model.layers.8"] = device_id2
        device_map["llm.model.layers.9"] = device_id2
        device_map["llm.model.layers.10"] = device_id2
        device_map["llm.model.layers.11"] = device_id2
        device_map["llm.model.layers.12"] = device_id2
        device_map["llm.model.layers.13"] = device_id2
        device_map["llm.model.layers.14"] = device_id2
        device_map["llm.model.layers.15"] = device_id2
        device_map["llm.model.layers.16"] = device_id2
        #print(device_map)

        model = load_checkpoint_and_dispatch(model, model_path, dtype=torch.bfloat16, device_map=device_map)
    else:
        with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
            model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
            model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model.eval()

ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.6'
MAX_NUM_FRAMES = 64
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}

def get_file_extension(filename):
    return os.path.splitext(filename)[1].lower()

def is_image(filename):
    return get_file_extension(filename) in IMAGE_EXTENSIONS

def is_video(filename):
    return get_file_extension(filename) in VIDEO_EXTENSIONS

form_radio = {
    'choices': ['Beam Search', 'Sampling'],
    #'value': 'Beam Search',
    'value': 'Sampling',
    'interactive': True,
    'label': 'Decode Type'
}

def create_component(params, comp='Slider'):
    if comp == 'Slider':
        return gr.Slider(
            minimum=params['minimum'],
            maximum=params['maximum'],
            value=params['value'],
            step=params['step'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Radio':
        return gr.Radio(
            choices=params['choices'],
            value=params['value'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Button':
        return gr.Button(
            value=params['value'],
            interactive=True
        )

def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False):
    return mgr.MultimodalInput(upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'},
                                        upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'},
                                        submit_button_props={'label': 'Submit'})

def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
    try:
        print('msgs:', msgs)
        answer = model.chat(
            image=None,
            msgs=msgs,
            tokenizer=tokenizer,
            **params
        )
        res = re.sub(r'(<box>.*</box>)', '', answer)
        res = res.replace('<ref>', '')
        res = res.replace('</ref>', '')
        res = res.replace('<box>', '')
        answer = res.replace('</box>', '')
        print('answer:', answer)
        return 0, answer, None, None
    except Exception as e:
        print(e)
        traceback.print_exc()
        return -1, ERROR_MSG, None, None

def encode_image(image):
    if not isinstance(image, Image.Image):
        if hasattr(image, 'path'):
            image = Image.open(image.path).convert("RGB")
        else:
            image = Image.open(image.file.path).convert("RGB")
    # resize to max_size
    max_size = 448*16
    if max(image.size) > max_size:
        w,h = image.size
        if w > h:
            new_w = max_size
            new_h = int(h * max_size / w)
        else:
            new_h = max_size
            new_w = int(w * max_size / h)
        image = image.resize((new_w, new_h), resample=Image.BICUBIC)
    return image
    ## save by BytesIO and convert to base64
    #buffered = io.BytesIO()
    #image.save(buffered, format="png")
    #im_b64 = base64.b64encode(buffered.getvalue()).decode()
    #return {"type": "image", "pairs": im_b64}

def encode_video(video):
    def uniform_sample(l, n):
        gap = len(l) / n
        idxs = [int(i * gap + gap / 2) for i in range(n)]
        return [l[i] for i in idxs]

    if hasattr(video, 'path'):
        vr = VideoReader(video.path, ctx=cpu(0))
    else:
        vr = VideoReader(video.file.path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # FPS
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    if len(frame_idx)>MAX_NUM_FRAMES:
        frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
    video = vr.get_batch(frame_idx).asnumpy()
    video = [Image.fromarray(v.astype('uint8')) for v in video]
    video = [encode_image(v) for v in video]
    print('video frames:', len(video))
    return video

def check_mm_type(mm_file):
    if hasattr(mm_file, 'path'):
        path = mm_file.path
    else:
        path = mm_file.file.path
    if is_image(path):
        return "image"
    if is_video(path):
        return "video"
    return None

def encode_mm_file(mm_file):
    if check_mm_type(mm_file) == 'image':
        return [encode_image(mm_file)]
    if check_mm_type(mm_file) == 'video':
        return encode_video(mm_file)
    return None

def make_text(text):
    #return {"type": "text", "pairs": text} # # For remote call
    return text

def encode_message(_question):
    files = _question.files
    question = _question.text
    pattern = r"\[mm_media\]\d+\[/mm_media\]"
    matches = re.split(pattern, question)
    message = []
    if len(matches) != len(files) + 1:
        gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!")
    assert len(matches) == len(files) + 1

    text = matches[0].strip()
    if text:
        message.append(make_text(text))
    for i in range(len(files)):
        message += encode_mm_file(files[i])
        text = matches[i + 1].strip()
        if text:
            message.append(make_text(text))
    return message

def check_has_videos(_question):
    images_cnt = 0
    videos_cnt = 0
    for file in _question.files:
        if check_mm_type(file) == "image":
            images_cnt += 1
        else:
            videos_cnt += 1
    return images_cnt, videos_cnt

def count_video_frames(_context):
    num_frames = 0
    for message in _context:
        for item in message["content"]:
            #if item["type"] == "image": # For remote call
            if isinstance(item, Image.Image):
                num_frames += 1
    return num_frames

def respond(_question, _chat_bot, _app_cfg, params_form):
    _context = _app_cfg['ctx'].copy()
    _context.append({'role': 'user', 'content': encode_message(_question)})

    images_cnt = _app_cfg['images_cnt']
    videos_cnt = _app_cfg['videos_cnt']
    files_cnts = check_has_videos(_question)
    if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0):
        gr.Warning("Only supports single video file input right now!")
        return _question, _chat_bot, _app_cfg

    if params_form == 'Beam Search':
        params = {
            'sampling': False,
            'num_beams': 3,
            'repetition_penalty': 1.2,
            "max_new_tokens": 2048
        }
    else:
        params = {
            'sampling': True,
            'top_p': 0.8,
            'top_k': 100,
            'temperature': 0.7,
            'repetition_penalty': 1.05,
            "max_new_tokens": 2048
        }

    if files_cnts[1] + videos_cnt > 0:
        params["max_inp_length"] = 4352 # 4096+256
        params["use_image_id"] = False
        params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2

    code, _answer, _, sts = chat("", _context, None, params)

    images_cnt += files_cnts[0]
    videos_cnt += files_cnts[1]
    _context.append({"role": "assistant", "content": [make_text(_answer)]})
    _chat_bot.append((_question, _answer))
    if code == 0:
        _app_cfg['ctx']=_context
        _app_cfg['sts']=sts
    _app_cfg['images_cnt'] = images_cnt
    _app_cfg['videos_cnt'] = videos_cnt

    upload_image_disabled = videos_cnt > 0
    upload_video_disabled = videos_cnt > 0 or images_cnt > 0
    return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg

def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg):
    ctx = _app_cfg["ctx"]
    message_item = []
    if _image is not None:
        image = Image.open(_image).convert("RGB")
        ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]})
        message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]})
    else:
        if _user_message:
            ctx.append({"role": "user", "content": [make_text(_user_message)]})
            message_item.append({"text": _user_message, "files": []})
        else:
            message_item.append(None)
    if _assistant_message:
        ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]})
        message_item.append({"text": _assistant_message, "files": []})
    else:
        message_item.append(None)

    _chat_bot.append(message_item)
    return None, "", "", _chat_bot, _app_cfg

def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form):
    user_message_contents = []
    _context = _app_cfg["ctx"].copy()
    if _image:
        image = Image.open(_image).convert("RGB")
        user_message_contents += [encode_image(image)]
    if _user_message:
        user_message_contents += [make_text(_user_message)]
    if user_message_contents:
        _context.append({"role": "user", "content": user_message_contents})

    if params_form == 'Beam Search':
        params = {
            'sampling': False,
            'num_beams': 3,
            'repetition_penalty': 1.2,
            "max_new_tokens": 2048
        }
    else:
        params = {
            'sampling': True,
            'top_p': 0.8,
            'top_k': 100,
            'temperature': 0.7,
            'repetition_penalty': 1.05,
            "max_new_tokens": 2048
        }

    code, _answer, _, sts = chat("", _context, None, params)

    _context.append({"role": "assistant", "content": [make_text(_answer)]})

    if _image:
        _chat_bot.append([
            {"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]},
            {"text": _answer, "files": []}
        ])
    else:
        _chat_bot.append([
            {"text": _user_message, "files": [_image]},
            {"text": _answer, "files": []}
        ])
    if code == 0:
        _app_cfg['ctx']=_context
        _app_cfg['sts']=sts
    return None, '', '', _chat_bot, _app_cfg

def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form):
    if len(_chat_bot) <= 1 or not _chat_bot[-1][1]:
        gr.Warning('No question for regeneration.')
        return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg
    if _app_cfg["chat_type"] == "Chat":
        images_cnt = _app_cfg['images_cnt']
        videos_cnt = _app_cfg['videos_cnt']
        _question = _chat_bot[-1][0]
        _chat_bot = _chat_bot[:-1]
        _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
        files_cnts = check_has_videos(_question)
        images_cnt -= files_cnts[0]
        videos_cnt -= files_cnts[1]
        _app_cfg['images_cnt'] = images_cnt
        _app_cfg['videos_cnt'] = videos_cnt
        upload_image_disabled = videos_cnt > 0
        upload_video_disabled = videos_cnt > 0 or images_cnt > 0
        _question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form)
        return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
    else:
        last_message = _chat_bot[-1][0]
        last_image = None
        last_user_message = ''
        if last_message.text:
            last_user_message = last_message.text
        if last_message.files:
            last_image = last_message.files[0].file.path
        _chat_bot = _chat_bot[:-1]
        _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
        _image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form)
        return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg

def flushed():
    return gr.update(interactive=True)

def clear(txt_message, chat_bot, app_session):
    txt_message.files.clear()
    txt_message.text = ''
    chat_bot = copy.deepcopy(init_conversation)
    app_session['sts'] = None
    app_session['ctx'] = []
    app_session['images_cnt'] = 0
    app_session['videos_cnt'] = 0
    return create_multimodal_input(), chat_bot, app_session, None, '', ''

def select_chat_type(_tab, _app_cfg):
    _app_cfg["chat_type"] = _tab
    return _app_cfg

init_conversation = [
    [
        None,
        {
            # The first message of bot closes the typewriter.
            "text": "You can talk to me now",
            "flushing": False
        }
    ],
]

css = """
video { height: auto !important; }
.example label { font-size: 16px;}
"""

introduction = """

## Features:
1. Chat with single image
2. Chat with multiple images
3. Chat with video
4. In-context few-shot learning

Click `How to use` tab to see examples.
"""

with gr.Blocks(css=css) as demo:
    with gr.Tab(model_name):
        with gr.Row():
            with gr.Column(scale=1, min_width=300):
                gr.Markdown(value=introduction)
                params_form = create_component(form_radio, comp='Radio')
                regenerate = create_component({'value': 'Regenerate'}, comp='Button')
                clear_button = create_component({'value': 'Clear History'}, comp='Button')

            with gr.Column(scale=3, min_width=500):
                app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'})
                chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False)

                with gr.Tab("Chat") as chat_tab:
                    txt_message = create_multimodal_input()
                    chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False)

                    txt_message.submit(
                        respond,
                        [txt_message, chat_bot, app_session, params_form],
                        [txt_message, chat_bot, app_session]
                    )

                with gr.Tab("Few Shot") as fewshot_tab:
                    fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False)
                    with gr.Row():
                        with gr.Column(scale=1):
                            image_input = gr.Image(type="filepath", sources=["upload"])
                        with gr.Column(scale=3):
                            user_message = gr.Textbox(label="User")
                            assistant_message = gr.Textbox(label="Assistant")
                            with gr.Row():
                                add_demonstration_button = gr.Button("Add Example")
                                generate_button = gr.Button(value="Generate", variant="primary")
                    add_demonstration_button.click(
                        fewshot_add_demonstration,
                        [image_input, user_message, assistant_message, chat_bot, app_session],
                        [image_input, user_message, assistant_message, chat_bot, app_session]
                    )
                    generate_button.click(
                        fewshot_respond,
                        [image_input, user_message, chat_bot, app_session, params_form],
                        [image_input, user_message, assistant_message, chat_bot, app_session]
                    )

                chat_tab.select(
                    select_chat_type,
                    [chat_tab_label, app_session],
                    [app_session]
                )
                chat_tab.select( # do clear
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )
                fewshot_tab.select(
                    select_chat_type,
                    [fewshot_tab_label, app_session],
                    [app_session]
                )
                fewshot_tab.select( # do clear
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )
                chat_bot.flushed(
                    flushed,
                    outputs=[txt_message]
                )
                regenerate.click(
                    regenerate_button_clicked,
                    [txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form],
                    [txt_message, image_input, user_message, assistant_message, chat_bot, app_session]
                )
                clear_button.click(
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )

    with gr.Tab("How to use"):
        with gr.Column():
            with gr.Row():
                image_example = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/m_bear2.gif", label='1. Chat with single or multiple images', interactive=False, width=400, elem_classes="example")
                example2 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/video2.gif", label='2. Chat with video', interactive=False, width=400, elem_classes="example")
                example3 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/fshot.gif", label='3. Few shot', interactive=False, width=400, elem_classes="example")

# launch
demo.launch(share=False, debug=True, show_api=False, server_port=8885, server_name="0.0.0.0")
bash 复制代码
#第一次运行web_demo_2.6.py报错如下
File "/Usxxxxxxxckages/torch/nn/modules/module.py", line 1158, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
TypeError: BFloat16 is not supported on MPS

#重装依赖
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

#再次运行就没问题了
#这里下载模型20g可能会等一段时间,最后借助魔法下载,看这网速在疯狂跑就没问题
#成功运行输出如下
Loading checkpoint shards: 100%|██████████| 4/4 [00:21<00:00,  5.33s/it]
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Running on local URL:  http://0.0.0.0:8885

To create a public link, set `share=True` in `launch()`.
IMPORTANT: You are using gradio version 4.22.0, however version 4.29.0 is available, please upgrade.
--------

效果展示

图片理解

Sampling解码

Beam Search解码

视频理解

Sampling解码

Beam Search解码

系统占用

总结

  • 解决flash_attn强制依赖问题
  • 解决bfloat16在mps无法使用问题
  • 看系统占用是没走mps,添加的环境变量也可以看出
  • Sampling瞎回答,Beam Search回答很惊喜
  • Beam Search处理视频4秒,在m1pro下,当前代码中需要230s左右
  • ollama部署还在研究中...

写到最后

相关推荐
好悬给我拽开线6 分钟前
【论文阅读】RT-SKETCH: GOAL-CONDITIONED IMITATION LEARNING FROM HAND-DRAWN SKETCHES
论文阅读·macos·sketch
随心但不率性20 小时前
macos app签名和公证
macos·策略模式
witton1 天前
macOS使用LLVM官方发布的tar.xz来安装Clang编译器
vscode·macos·cmake·clang·llvm·qtcreator·clang++
OKXLIN1 天前
IOS 自定义代理协议Delegate
macos·ios·cocoa
aerror2 天前
Macos下交叉编译安卓的paq8px压缩算法
android·macos
LOLA44442 天前
如何解压7z文件?8种方法(Win/Mac/手机/网页端)
macos·软件需求
刘泽美2 天前
Mac 查看 Java SDK 和 Android SDK 的路径
android·macos
kkk2358132 天前
Diffmerge的下载和使用
macos
桂月二二2 天前
使用 Intersection Observer 实现高效懒加载和滚动监听
前端·macos·前端框架
阿狸远翔2 天前
Mac 上管理本地 Go 版本
chrome·macos·golang