RabbitMq的事务机制

RabbitMQ中与事务机制有关的方法有三个:txSelect(), txCommit()以及txRollback(), txSelect用于将当前channel设置成transaction模式,txCommit用于提交事务,txRollback用于回滚事务,在通过txSelect开启事务之后,我们便可以发布消息给broker代理服务器了,如果txCommit提交成功了,则消息一定到达了broker了,如果在txCommit执行之前broker异常崩溃或者由于其他原因抛出异常,这个时候我们便可以捕获异常通过txRollback回滚事务了。

复制代码
public class P1 {

    private static final String QUEUE_NAME = "test_tx";
    public static void main(String[] args) throws IOException, TimeoutException {
        Connection connection = ConnectionUtils.getConnection();
        Channel channel = connection.createChannel();

        channel.queueDeclare(QUEUE_NAME,false,false,true,null);
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd 'at' HH:mm:ss z");
        Date date = new Date(System.currentTimeMillis());
        String message = simpleDateFormat.format(date);

        try {
            channel.txSelect();//开始事务
            channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
            channel.txCommit();//提交事务
        }catch (Exception e){
            channel.txRollback();//回滚事务
            System.out.println("send message txRollback");
        }
        channel.close();
        connection.close();


    }
}
  • 采用事务机制实现会降低RabbitMQ的消息吞吐量。
  • 有一种更好的方法就是开启发布确认,生产者在发送消息时会为每条消息分配一个唯一的id,当消息正常到达broker时就会通知生产者。
  • 一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。
相关推荐
BYSJMG8 小时前
计算机毕设大数据方向:基于Spark+Hadoop的餐饮外卖平台数据分析系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
hong_zc8 小时前
RabbitMQ工作模式(下)
rabbitmq
PXM的算法星球11 小时前
ZooKeeper vs Redis:分布式锁的实现与选型指南
redis·分布式·zookeeper
寒士obj12 小时前
Redisson分布式锁:看门狗机制与续期原理
redis·分布式
Micrle_00712 小时前
java分布式场景怎么实现一个高效的 读-写锁
java·分布式
楠枬12 小时前
Curator 如何实现分布式锁
分布式·zookeeper
Badman13 小时前
分布式系统下的数据一致性-Redis分布式锁
redis·分布式·后端
武子康16 小时前
Java-118 深入浅出 MySQL ShardingSphere 分片剖析:SQL 支持范围、限制与优化实践
java·大数据·数据库·分布式·sql·mysql·性能优化
毕设源码-赖学姐17 小时前
【开题答辩全过程】以 基于Hadoop电商数据的可视化分析为例,包含答辩的问题和答案
大数据·hadoop·分布式
喂完待续18 小时前
【Big Data】Apache Kafka 分布式流处理平台的实时处理实践与洞察
分布式·kafka·消息队列·big data·数据处理·序列晋升