7-1 深度学习硬件:CPU和GPU


L 3 L3 L3、 L 2 L2 L2、 L 1 L1 L1为cache,数据只有进入寄存器的时候,才能开始运算。

(此图错误,一个矩阵应该是按存储的!)


  • GPU的核要远远多于CPU,从而TFLOPS,GPU每秒能做的浮点运算要远远多于CPU
  • GPU的内存和带宽要比CPU大得多

CPU和GPU之间并不是独立的,因为任务其实都是跑在CPU上的。


相关推荐
It's now20 分钟前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R27 分钟前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜1 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI1 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志1 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊1 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great2 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss2 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910132 小时前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能