深度学习-MTR数据准备与训练

1、def create_infos_from_protos(raw_data_path, output_path, num_workers=1):

num_workers从16改成1

2、MTR的数据准备用的是scenario里的数据,不是tf_example里的

3、数据用motion1.1

4、motion数据格式:https://zhuanlan.zhihu.com/p/419147352
https://blog.csdn.net/weixin_50232758/article/details/132260047

一个tfrecord中包含大概500个scenario,scenario是一帧数据

5、由于tensorflow与torch中的typing-extensions 版本无法统一,所以数据集准备与训练分别建立两个虚拟环境进行

构建数据集准备的虚拟环境:

python 复制代码
conda create --name waymo_data_preparation python=3.8
pip install waymo-open-dataset-tf-2-12-0==1.6.4

MTR训练验证环境构建:

相关推荐
悟纤6 分钟前
Suno 创作Rap音乐李白的《将进酒》,音乐风格音乐无所不能 | 从零开始用Suno Ai | 第5篇
人工智能·suno ai·suno api·ai music
小小工匠10 分钟前
LLM - Google 5-Day AI Agents Intensive
人工智能·ai agents
雨大王51212 分钟前
AI视觉检测怎么选?技术原理、行业应用与解决方案解析
人工智能·计算机视觉·视觉检测
ziwu13 分钟前
【垃圾识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·深度学习·图像识别
Elastic 中国社区官方博客29 分钟前
Elasticsearch:数据脱节如何破坏现代调查
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
却道天凉_好个秋37 分钟前
OpenCV(三十八):什么是特征检测
人工智能·opencv·计算机视觉
m0_5711866039 分钟前
第二十六周周报
人工智能
我不是QI41 分钟前
周志华《机器学习—西瓜书》四
人工智能·机器学习
roman_日积跬步-终至千里42 分钟前
【计算机视觉(8)】双视图几何基础篇:从立体视觉到极线约束
人工智能·数码相机·计算机视觉
nix.gnehc43 分钟前
杂记:泛化
人工智能·机器学习