深度学习-MTR数据准备与训练

1、def create_infos_from_protos(raw_data_path, output_path, num_workers=1):

num_workers从16改成1

2、MTR的数据准备用的是scenario里的数据,不是tf_example里的

3、数据用motion1.1

4、motion数据格式:https://zhuanlan.zhihu.com/p/419147352
https://blog.csdn.net/weixin_50232758/article/details/132260047

一个tfrecord中包含大概500个scenario,scenario是一帧数据

5、由于tensorflow与torch中的typing-extensions 版本无法统一,所以数据集准备与训练分别建立两个虚拟环境进行

构建数据集准备的虚拟环境:

python 复制代码
conda create --name waymo_data_preparation python=3.8
pip install waymo-open-dataset-tf-2-12-0==1.6.4

MTR训练验证环境构建:

相关推荐
Master_oid几秒前
机器学习32:机器终生学习(Life Long Learning)
人工智能·学习·机器学习
芷栀夏1 分钟前
CANN ops-math:为上层 AI 算子库提供核心支撑的基础计算模块深度拆解
人工智能·深度学习·transformer·cann
袁气满满~_~4 分钟前
深度学习笔记三
人工智能·笔记·深度学习
风象南6 分钟前
OpenSpec 与 Spec Kit 使用对比:规范驱动开发该选哪个?
人工智能
草莓熊Lotso1 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_2 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱4 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º6 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee8 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann