深度学习-MTR数据准备与训练

1、def create_infos_from_protos(raw_data_path, output_path, num_workers=1):

num_workers从16改成1

2、MTR的数据准备用的是scenario里的数据,不是tf_example里的

3、数据用motion1.1

4、motion数据格式:https://zhuanlan.zhihu.com/p/419147352
https://blog.csdn.net/weixin_50232758/article/details/132260047

一个tfrecord中包含大概500个scenario,scenario是一帧数据

5、由于tensorflow与torch中的typing-extensions 版本无法统一,所以数据集准备与训练分别建立两个虚拟环境进行

构建数据集准备的虚拟环境:

python 复制代码
conda create --name waymo_data_preparation python=3.8
pip install waymo-open-dataset-tf-2-12-0==1.6.4

MTR训练验证环境构建:

相关推荐
池央几秒前
从“算子不支持”到“NPU高效执行”:CANN 8.0 TBE 自定义算子落地实践
linux·人工智能
龙腾AI白云4 分钟前
卷积神经网络(CNN)详细介绍及其原理详解前言一、什么是卷积神经网络二、输入层
人工智能·django
上海蓝色星球10 分钟前
打破BIM应用“花瓶”窘境:让模型“活”在业务场景中
大数据·人工智能
币圈菜头13 分钟前
GAEA:情感AI如何改变我们的生活?12月空投前瞻
人工智能·web3·区块链·生活
骥龙13 分钟前
5.15、未来已来:AI安全的发展趋势与伦理思考
人工智能·安全
糖果罐子♡14 分钟前
在 openEuler 上部署 YOLOv8 实现实时目标检测
人工智能·yolo·目标检测
鲸采云SRM采购管理系统16 分钟前
SRM采购系统:鲸采云如何实现全链路管控
大数据·人工智能
c骑着乌龟追兔子16 分钟前
Day 27 常见的降维算法
人工智能·算法·机器学习
Wise玩转AI17 分钟前
从LLM到Agent:技术迁移的必然趋势
人工智能·python·语言模型·ai智能体
QT 小鲜肉21 分钟前
【孙子兵法之中篇】007. 孙子兵法·军争篇
人工智能·笔记·读书·孙子兵法