深度学习-MTR数据准备与训练

1、def create_infos_from_protos(raw_data_path, output_path, num_workers=1):

num_workers从16改成1

2、MTR的数据准备用的是scenario里的数据,不是tf_example里的

3、数据用motion1.1

4、motion数据格式:https://zhuanlan.zhihu.com/p/419147352
https://blog.csdn.net/weixin_50232758/article/details/132260047

一个tfrecord中包含大概500个scenario,scenario是一帧数据

5、由于tensorflow与torch中的typing-extensions 版本无法统一,所以数据集准备与训练分别建立两个虚拟环境进行

构建数据集准备的虚拟环境:

python 复制代码
conda create --name waymo_data_preparation python=3.8
pip install waymo-open-dataset-tf-2-12-0==1.6.4

MTR训练验证环境构建:

相关推荐
数据门徒4 分钟前
《人工智能现代方法(第4版)》 第6章 约束满足问题 学习笔记
人工智能·笔记·学习·算法
java_logo18 分钟前
MILVUS Docker 容器化部署指南
运维·人工智能·docker·容器·prometheus·milvus
Mxsoft61924 分钟前
「S变换精准定位谐波源!某次电能质量异常,时频分析救场!」
人工智能
B站_计算机毕业设计之家30 分钟前
python招聘数据 求职就业数据可视化平台 大数据毕业设计 BOSS直聘数据可视化分析系统 Flask框架 Echarts可视化 selenium爬虫技术✅
大数据·python·深度学习·考研·信息可视化·数据分析·flask
数据门徒30 分钟前
《人工智能现代方法(第4版)》 第8章 一阶逻辑 学习笔记
人工智能·笔记·学习·算法
好奇龙猫33 分钟前
【AI学习-comfyUI学习-第十四节-joycaption3课程工作流工作流-各个部分学习】
人工智能·学习
点云SLAM38 分钟前
Decisive 英文单词学习
人工智能·学习·英文单词学习·雅思备考·decisive·起决定性的·果断的
码农很忙39 分钟前
让复杂AI应用构建像搭积木:Spring AI Alibaba Graph深度指南与源码拆解
开发语言·人工智能·python
熊猫钓鱼>_>44 分钟前
TensorFlow深度学习框架入门浅析
深度学习·神经网络·tensorflow·neo4j·张量·训练模型·评估模型