深度学习-MTR数据准备与训练

1、def create_infos_from_protos(raw_data_path, output_path, num_workers=1):

num_workers从16改成1

2、MTR的数据准备用的是scenario里的数据,不是tf_example里的

3、数据用motion1.1

4、motion数据格式:https://zhuanlan.zhihu.com/p/419147352
https://blog.csdn.net/weixin_50232758/article/details/132260047

一个tfrecord中包含大概500个scenario,scenario是一帧数据

5、由于tensorflow与torch中的typing-extensions 版本无法统一,所以数据集准备与训练分别建立两个虚拟环境进行

构建数据集准备的虚拟环境:

python 复制代码
conda create --name waymo_data_preparation python=3.8
pip install waymo-open-dataset-tf-2-12-0==1.6.4

MTR训练验证环境构建:

相关推荐
JoannaJuanCV13 小时前
自动驾驶—CARLA仿真(19)automatic_control demo
人工智能·机器学习·自动驾驶
热爱生活的五柒13 小时前
PolSAR Image Registration——极化合成孔径雷达(PolSAR)图像配准
人工智能·计算机视觉·sar
qq_2337727113 小时前
**给复杂机器“装上行车记录仪”:一篇量子论文如何照亮AI时代的信任之路**
人工智能
美林数据Tempodata13 小时前
案例分享|西安财经大学打造全覆盖、全链条人工智能通识教育培养体系
人工智能
O561 6O623O7 安徽正华露13 小时前
露,生物信号采集处理系统一体机 生物机能实验系统 生物信号采集处理系统 生理机能实验
人工智能
AI营销快线14 小时前
原圈科技如何引领AI营销内容生产升级:行业进化路线与闭环创新洞察
人工智能
AI营销先锋14 小时前
2025 AI市场舆情分析行业报告:原圈科技如何帮助企业穿越迷雾,寻找增长北极星
大数据·人工智能
找方案14 小时前
hello-agents 学习笔记:智能体发展史 —— 从符号逻辑到 AI 协作的进化之旅
人工智能·笔记·学习·智能体·hello-agents
skywalk816314 小时前
Auto-Coder用Qwen3-Coder-30B-A3B-Instruct模型写一个学习汉字的项目
人工智能·学习·auto-coder
Alluxio14 小时前
Alluxio正式登陆Oracle云市场,为AI工作负载提供TB级吞吐量与亚毫秒级延迟
人工智能·分布式·机器学习·缓存·ai·oracle