机器学习中的距离概念

距离在机器学习中应用广泛,包括欧式距离、曼哈顿距离、内积距离和KL距离。

下面总结一下。

机器学习中的距离

欧式距离

欧式距离(Euclidean Distance)是机器学习和数据科学中常用的一种距离度量方式,用来衡量两个点在欧几里得空间中的距离。它是通过计算这两个点之间的直线距离来表示的。

应用场景:

  • 分类问题:在 k-近邻算法 (k-Nearest Neighbors, KNN) 中,欧式距离被用来衡量待分类样本与已知类别样本之间的距离,以此来判断待分类样本的类别。
  • 聚类分析:在聚类算法(如 K-Means)中,欧式距离常用于计算每个样本点与簇中心的距离,从而决定样本点属于哪个簇。
  • 降维与度量学习:在某些降维技术(如主成分分析,PCA)或度量学习算法中,欧式距离被用来保持数据点之间的相对距离关系。

特点和局限性:

  • 优点:欧式距离直观易于计算,适用于大多数的物理空间距离计算。
  • 局限性:在高维空间(即"维度灾难")下,欧式距离可能会失去其有效性,因为所有点之间的距离趋向于相似,导致算法效果下降。
  • 另外,欧式距离对数据中的尺度敏感,如果各个维度的量纲不同,通常需要进行归一化处理

曼哈顿距离

曼哈顿距离(Manhattan Distance),也称为城市街区距离(City Block Distance)或 L1 距离,是一种用于度量两个点之间距离的方式。与欧式距离不同,曼哈顿距离表示在一个网格状路径上移动的距离,就像在城市街道中沿着直角走动。

应用场景:

  • 分类和回归:在一些机器学习算法中(如 k-近邻算法),曼哈顿距离可以用于衡量样本之间的相似性,尤其是在特征独立且均匀分布的情况下。
  • 图像处理:在图像处理中,曼哈顿距离有时用于计算像素之间的距离,因为它能够更好地保持图像的结构特性。
  • 神经网络:在某些神经网络的正则化过程中(如 L1 正则化),曼哈顿距离的概念用于惩罚模型的复杂度。

特点和局限性:

  • 优点:曼哈顿距离对于高维数据稀疏数据表现较好,因为它不受高维空间中距离趋同效应的影响。
  • 局限性:在某些情况下,曼哈顿距离可能不如欧式距离直观,尤其是当数据更接近连续变化而非离散变化时。

内积距离

内积距离(Inner Product Distance)是一种基于向量内积相似性度量方法。在机器学习和数据分析中,内积(也称为点积或标量积)通常用于评估两个向量之间的相似性。

应用场景:

  • 相似性度量:内积可以用于衡量两个向量之间的相似性。☆在某些推荐系统中,内积用于计算用户与物品之间的相似性。
  • 神经网络:在神经网络中,内积是计算神经元输入和权重的线性组合的基础操作。
  • 信息检索:在文本检索中,内积可以用于衡量文档与查询向量之间的相似性。

局限性

  • 不对称性:内积不是严格意义上的"距离"度量,因为它不满足对称性和三角不等式等性质。
  • 尺度问题:由于内积受向量长度影响,直接使用内积作为距离度量可能导致误导性的结果,尤其是在向量长度差异较大的情况下。

为了克服这些局限性,内积通常与其他方法结合使用,如余弦相似性(通过将向量归一化)等。

KL距离

KL距离通常指的是Kullback-Leibler散度(Kullback-Leibler Divergence),又称KL散度或相对熵。它是信息论中用于衡量两个概率分布之间差异的一种非对称度量。KL散度在机器学习、统计学和信息论中有广泛的应用。

注:

KL距离不具有对称性。

应用场景

  • 机器学习:在机器学习中,KL散度常用于优化问题,如变分自动编码器(VAE)中,KL散度用于衡量近似后验分布与真实后验分布之间的差异。
  • 统计推断:KL散度可用于模型选择和假设检验,通过比较不同模型的拟合优度来选择最合适的模型。
  • 信息论:在信息论中,KL散度用于量化两个概率分布之间的差异,特别是在压缩和传输信息时。

距离作为损失函数(MSE/MAE...)

这里补充一下关于内积相似度。如果计算的话,首先需要给出"相似"的定义。

比如下面这个例子。

欧式距离与内积距离的联系


若是在A,B两点到原点的距离都是1的情况下,欧氏距离越大,内积相似度越小。

☆距离的有效性

在机器学习中无论什么距离,都是对短途有效!

距离在过远时已经丧失了意义。

在如上图这种情况下,如果计算A,B之间的距离,不能直接根据A,B两点的坐标进行计算,因为A,B距离"太远",不能直接计算,而需要找到距离A的很近的若干点,不断地沿着路径计算出d1,d2,d3,...,dn,然后相加即可。

相关推荐
机器之心3 分钟前
稚晖君的「好东西」揭晓!首个通用具身基座模型,机器人告别「看得懂做不来」
人工智能·openai
大刘讲IT10 分钟前
Zabbix+AI大模型实战:智能故障诊断与工单预警系统设计
人工智能·zabbix
DuDuTalk10 分钟前
DuDuTalk接入DeepSeek,重构企业沟通数字化新范式
大数据·人工智能
ZhuBin36515 分钟前
推测gpt4o视觉皮层建立的过程
人工智能·深度学习·计算机视觉
大数据追光猿18 分钟前
Qwen 模型与 LlamaFactory 结合训练详细步骤教程
大数据·人工智能·深度学习·计算机视觉·语言模型
何仙鸟35 分钟前
深度学习网格搜索实战
人工智能·深度学习
轻松Ai享生活1 小时前
2025人工智能时代的生存指南
人工智能
轻松Ai享生活1 小时前
如何使用 Python 调用 DeepSeek-R1 API?
人工智能
ππ记录1 小时前
Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻
人工智能·chatgpt·manus详细介绍·manus介绍·manus详细应用·manus教程·manus详情介绍
Timbo2号2 小时前
OpenAI API调用实战:跨境支付验证的技术解决方案
人工智能·github