Azure OpenAI Swagger Validation Failure with APIM

题意:Azure OpenAI Swagger 验证失败与 APIM

问题背景:

I'm converting the Swagger for Azure OpenAI API Version 2023-07-01-preview from json to yaml

我正在将 Azure OpenAI API 版本 2023-07-01-preview 的 Swagger 从 JSON 转换为 YAML。

My Swagger looks like this 我的 Swagger 看起来是这样的

python 复制代码
openapi: 3.0.1
info:
  title: OpenAI Models API
  description: ''
  version: '123'
servers:
  - url: https://def.com/openai
paths:
  /gpt-35-turbo/chat/completions:
    post:
      tags:
        - openai
      summary: Creates a completion for the chat message
      description: gpt-35-turbo-chat-completion
      operationId: GPT_35_Turbo_ChatCompletions_Create
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/createChatCompletionRequest'
      responses:
        '200':
          description: OK
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/createChatCompletionResponse'
          headers:
            apim-request-id:
              description: Request ID for troubleshooting purposes
              schema:
                type: string
        default:
          description: Service unavailable
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/errorResponse'
          headers:
            apim-request-id:
              description: Request ID for troubleshooting purposes
              schema:
                type: string
components:
  schemas:
    errorResponse:
      type: object
      properties:
        error:
          $ref: '#/components/schemas/error'
    errorBase:
      type: object
      properties:
        code:
          type: string
        message:
          type: string
    error:
      type: object
      allOf:
        - $ref: '#/components/schemas/errorBase'
      properties:
        code:
          type: string
        message:
          type: string
        param:
          type: string
        type:
          type: string
        inner_error:
          $ref: '#/components/schemas/innerError'
    innerError:
      description: Inner error with additional details.
      type: object
      properties:
        code:
          $ref: '#/components/schemas/innerErrorCode'
        content_filter_results:
          $ref: '#/components/schemas/contentFilterResults'
    innerErrorCode:
      description: Error codes for the inner error object.
      enum:
        - ResponsibleAIPolicyViolation
      type: string
      x-ms-enum:
        name: InnerErrorCode
        modelAsString: true
        values:
          - value: ResponsibleAIPolicyViolation
            description: The prompt violated one of more content filter rules.  
    contentFilterResult:
      type: object
      properties:
        severity:
          type: string
          enum:
            - safe
            - low
            - medium
            - high
          x-ms-enum:
            name: ContentFilterSeverity
            modelAsString: true
            values:
              - value: safe
                description: >-
                  General content or related content in generic or non-harmful
                  contexts.
              - value: low
                description: Harmful content at a low intensity and risk level.
              - value: medium
                description: Harmful content at a medium intensity and risk level.
              - value: high
                description: Harmful content at a high intensity and risk level.
        filtered:
          type: boolean
      required:
        - severity
        - filtered
    contentFilterResults:
      type: object
      description: >-
        Information about the content filtering category (hate, sexual,
        violence, self_harm), if it has been detected, as well as the severity
        level (very_low, low, medium, high-scale that determines the intensity
        and risk level of harmful content) and if it has been filtered or not.
      properties:
        sexual:
          $ref: '#/components/schemas/contentFilterResult'
        violence:
          $ref: '#/components/schemas/contentFilterResult'
        hate:
          $ref: '#/components/schemas/contentFilterResult'
        self_harm:
          $ref: '#/components/schemas/contentFilterResult'
        error:
          $ref: '#/components/schemas/errorBase'
    promptFilterResult:
      type: object
      description: Content filtering results for a single prompt in the request.
      properties:
        prompt_index:
          type: integer
        content_filter_results:
          $ref: '#/components/schemas/contentFilterResults'
    promptFilterResults:
      type: array
      description: >-
        Content filtering results for zero or more prompts in the request. In a
        streaming request, results for different prompts may arrive at different
        times or in different orders.
      items:
        $ref: '#/components/schemas/promptFilterResult'  
    createChatCompletionRequest:
      type: object
      allOf:
        - $ref: '#/components/schemas/chatCompletionsRequestCommon'
        - properties:
            messages:
              description: >-
                A list of messages comprising the conversation so far. [Example
                Python
                code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb).
              type: array
              minItems: 1
              items:
                $ref: '#/components/schemas/chatCompletionRequestMessage'
            functions:
              description: A list of functions the model may generate JSON inputs for.
              type: array
              minItems: 1
              items:
                $ref: '#/components/schemas/chatCompletionFunctions'
            function_call:
              description: >-
                Controls how the model responds to function calls. "none" means
                the model does not call a function, and responds to the
                end-user. "auto" means the model can pick between an end-user or
                calling a function.  Specifying a particular function via
                `{"name":\ "my_function"}` forces the model to call that
                function. "none" is the default when no functions are present.
                "auto" is the default if functions are present.
              oneOf:
                - type: string
                  enum:
                    - none
                    - auto
                - type: object
                  properties:
                    name:
                      type: string
                      description: The name of the function to call.
                  required:
                    - name
            'n':
              type: integer
              minimum: 1
              maximum: 128
              default: 1
              example: 1
              nullable: true
              description: >-
                How many chat completion choices to generate for each input
                message.
      required:
        - messages    
    chatCompletionsRequestCommon:
      type: object
      properties:
        temperature:
          description: >-
            What sampling temperature to use, between 0 and 2. Higher values
            like 0.8 will make the output more random, while lower values like
            0.2 will make it more focused and deterministic.

            We generally recommend altering this or `top_p` but not both.
          type: number
          minimum: 0
          maximum: 2
          default: 1
          example: 1
          nullable: true
        top_p:
          description: >-
            An alternative to sampling with temperature, called nucleus
            sampling, where the model considers the results of the tokens with
            top_p probability mass. So 0.1 means only the tokens comprising the
            top 10% probability mass are considered.

            We generally recommend altering this or `temperature` but not both.
          type: number
          minimum: 0
          maximum: 1
          default: 1
          example: 1
          nullable: true
        stop:
          description: Up to 4 sequences where the API will stop generating further tokens.
          oneOf:
            - type: string
              nullable: true
            - type: array
              items:
                type: string
                nullable: false
              minItems: 1
              maxItems: 4
              description: Array minimum size of 1 and maximum of 4
          default: null
        max_tokens:
          description: >-
            The maximum number of tokens allowed for the generated answer. By
            default, the number of tokens the model can return will be (4096 -
            prompt tokens).
          type: integer
          default: 4096
        presence_penalty:
          description: >-
            Number between -2.0 and 2.0. Positive values penalize new tokens
            based on whether they appear in the text so far, increasing the
            model's likelihood to talk about new topics.
          type: number
          default: 0
          minimum: -2
          maximum: 2
        frequency_penalty:
          description: >-
            Number between -2.0 and 2.0. Positive values penalize new tokens
            based on their existing frequency in the text so far, decreasing the
            model's likelihood to repeat the same line verbatim.
          type: number
          default: 0
          minimum: -2
          maximum: 2
        logit_bias:
          description: >-
            Modify the likelihood of specified tokens appearing in the
            completion. Accepts a json object that maps tokens (specified by
            their token ID in the tokenizer) to an associated bias value from
            -100 to 100. Mathematically, the bias is added to the logits
            generated by the model prior to sampling. The exact effect will vary
            per model, but values between -1 and 1 should decrease or increase
            likelihood of selection; values like -100 or 100 should result in a
            ban or exclusive selection of the relevant token.
          type: object
          nullable: true
        user:
          description: >-
            A unique identifier representing your end-user, which can help Azure
            OpenAI to monitor and detect abuse.
          type: string
          example: user-1234
          nullable: false
    chatCompletionRequestMessage:
      type: object
      properties:
        role:
          type: string
          enum:
            - system
            - user
            - assistant
            - function
          description: >-
            The role of the messages author. One of `system`, `user`,
            `assistant`, or `function`.
        content:
          type: string
          description: >-
            The contents of the message. `content` is required for all messages
            except assistant messages with function calls.
        name:
          type: string
          description: >-
            The name of the author of this message. `name` is required if role
            is `function`, and it should be the name of the function whose
            response is in the `content`. May contain a-z, A-Z, 0-9, and
            underscores, with a maximum length of 64 characters.
        function_call:
          type: object
          description: >-
            The name and arguments of a function that should be called, as
            generated by the model.
          properties:
            name:
              type: string
              description: The name of the function to call.
            arguments:
              type: string
              description: >-
                The arguments to call the function with, as generated by the
                model in JSON format. Note that the model does not always
                generate valid JSON, and may hallucinate parameters not defined
                by your function schema. Validate the arguments in your code
                before calling your function.
      required:
        - role
    createChatCompletionResponse:
      type: object
      allOf:
        - $ref: '#/components/schemas/chatCompletionsResponseCommon'
        - properties:
            prompt_filter_results:
              $ref: '#/components/schemas/promptFilterResults'
            choices:
              type: array
              items:
                type: object
                allOf:
                  - $ref: '#/components/schemas/chatCompletionChoiceCommon'
                  - properties:
                      message:
                        $ref: '#/components/schemas/chatCompletionResponseMessage'
                      content_filter_results:
                        $ref: '#/components/schemas/contentFilterResults'
      required:
        - id
        - object
        - created
        - model
        - choices                
    chatCompletionFunctions:
      type: object
      properties:
        name:
          type: string
          description: >-
            The name of the function to be called. Must be a-z, A-Z, 0-9, or
            contain underscores and dashes, with a maximum length of 64.
        description:
          type: string
          description: The description of what the function does.
        parameters:
          $ref: '#/components/schemas/chatCompletionFunctionParameters'
      required:
        - name
    chatCompletionFunctionParameters:
      type: object
      description: >-
        The parameters the functions accepts, described as a JSON Schema object.
        See the [guide](/docs/guides/gpt/function-calling) for examples, and the
        [JSON Schema
        reference](https://json-schema.org/understanding-json-schema/) for
        documentation about the format.
      additionalProperties: true
    chatCompletionsResponseCommon:
      type: object
      properties:
        id:
          type: string
        object:
          type: string
        created:
          type: integer
          format: unixtime
        model:
          type: string
        usage:
          type: object
          properties:
            prompt_tokens:
              type: integer
            completion_tokens:
              type: integer
            total_tokens:
              type: integer
          required:
            - prompt_tokens
            - completion_tokens
            - total_tokens
      required:
        - id
        - object
        - created
        - model
    chatCompletionChoiceCommon:
      type: object
      properties:
        index:
          type: integer
        finish_reason:
          type: string
    chatCompletionResponseMessage:
      type: object
      properties:
        role:
          type: string
          enum:
            - system
            - user
            - assistant
            - function
          description: The role of the author of this message.
        content:
          type: string
          description: The contents of the message.
        function_call:
          type: object
          description: >-
            The name and arguments of a function that should be called, as
            generated by the model.
          properties:
            name:
              type: string
              description: The name of the function to call.
            arguments:
              type: string
              description: >-
                The arguments to call the function with, as generated by the
                model in JSON format. Note that the model does not always
                generate valid JSON, and may hallucinate parameters not defined
                by your function schema. Validate the arguments in your code
                before calling your function.
      required:
        - role          
  securitySchemes:
    apiKeyHeader:
      type: apiKey
      name: Ocp-Apim-Subscription-Key
      in: header
    apiKeyQuery:
      type: apiKey
      name: subscription-key
      in: query
security:
  - apiKeyHeader: [ ]
  - apiKeyQuery: [ ]

I used this in azure apim and validating the content like this

我在 Azure APIM 中使用了这个,并像这样验证内容。

XML 复制代码
<validate-content unspecified-content-type-action="ignore" max-size="102400" size-exceeded-action="detect" errors-variable-name="requestBodyValidation">
            <content type="application/json" validate-as="json" action="prevent" allow-additional-properties="false" />
        </validate-content>

Now I tried to give the request like the actual property

现在我尝试像实际属性一样提供请求。

java 复制代码
{
    "messages": [
        {
            "role": "user", 
            "content": "Find beachfront hotels in San Diego for less than $300 a month with free breakfast."
        }
    ],
    "temperature": 1,
    "top_p": 1,
    "stop": "",
    "max_tokens": 2000,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "logit_bias": {},
    "user": "user-1234",
    "n": 1,
    "function_call" : "auto",
    "functions" : [
            {
            "name": "search_hotels",
            "description": "Retrieves hotels from the search index based on the parameters provided",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The location of the hotel (i.e. Seattle, WA)"
                    },
                    "max_price": {
                        "type": "number",
                        "description": "The maximum price for the hotel"
                    },
                    "features": {
                        "type": "string",
                        "description": "A comma separated list of features (i.e. beachfront, free wifi, etc.)"
                    }
                },
                "required": ["location"]
            }
        }
    ]
}

And the APIM is giving the error like

而 APIM 给出了如下错误:

python 复制代码
{
  "statusCode": 400,
  "message": "Body of the request does not conform to the definition which is associated with the content type application/json. JSON does not match all schemas from 'allOf'. Invalid schema indexes: 0, 1. Line: 42, Position: 1"
}

But the same request is working when I directly hit the azure openai.

但当我直接请求 Azure OpenAI 时,同样的请求是有效的。

What could be the possible issue here ?

这里可能是什么问题?

问题解决:

I believe your problem is this line allow-additional-properties="false"

我认为你遇到的问题是这一行 allow-additional-properties="false"

allow-additional-properties Boolean. For a JSON schema, specifies whether to implement a runtime override of the additionalProperties value configured in the schema:

  • true: allow additional properties in the request or response body, even if the JSON schema's additionalProperties field is configured to not allow additional properties.

true:允许在请求或响应主体中添加额外的属性,即使 JSON 模式的 additionalProperties 字段配置为不允许额外属性。

  • false: do not allow additional properties in the request or response body, even if the JSON schema's additionalProperties field is configured to allow additional properties

false:不允许在请求或响应主体中添加额外的属性,即使 JSON 模式的 additionalProperties 字段配置为允许额外属性。

If the attribute isn't specified, the policy validates additional properties according to configuration of the additionalProperties field in the schema.

如果未指定该属性,则策略将根据模式中 additionalProperties 字段的配置来验证额外属性。

source: 来源 https://learn.microsoft.com/en-us/azure/api-management/validate-content-policy#content-attributes

This property overrides your JSON Schema. Even though your allOf definition does not use additionalProperties: false, apim will inject this constraint to the root schema, which translates to

此属性会覆盖你的 JSON Schema。即使你的 allOf 定义没有使用 additionalProperties: false,APIM 仍会将此约束注入到根模式中,这会转化为

Kotlin 复制代码
{
  "type": "object",
  "additionalProperties": false,
  "allOf": [{...}, {...}]
}

This schema doesn't allow any properties to be validated because no properties are defined at the root.

该模式不允许验证任何属性,因为根本没有定义属性。

The only valid schemas in this situation would be

在这种情况下,唯一有效的模式是

Kotlin 复制代码
{}

OR

true

There are a few ways to tackle this but IMHO, the best option is to use the schema definition, rather than the apim attribute because you're introducing constraints on the schema where they are not defined. If someone else were to review the schema, they would run into the same issue you are having.

解决这个问题有几种方法,但依我看来,最好的选择是使用模式定义,而不是使用 APIM 属性,因为你在模式中引入了未定义的约束。如果其他人来审查这个模式,他们也会遇到你现在面临的相同问题。

This is where it may get tricky for you depending on which version of JSON Schema is supported in APIM and which version you are using.

这可能会变得棘手,具体取决于 APIM 支持的 JSON Schema 版本以及你正在使用的版本。

Draft-04 - 07 requires some massaging to the schema, in most circumstances, to achieve the desired behavior of using allOf with additionalProperties": false

在大多数情况下,Draft-04 到 Draft-07 需要对模式进行一些调整,以实现使用 allOfadditionalProperties: false 的预期行为。

  • turn off the content attribute in your apim validation

在你的 APIM 验证中关闭 content 属性。

  • add all properties of the first depth of subschemas to the root with an empty schema. This will allow the validator to recognize those properties at the root level to satisfy additionalProperties

将所有子模式第一层的属性添加到根模式中,并使用一个空模式。这将允许验证器在根级别识别这些属性,以满足 additionalProperties 的要求。

python 复制代码
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "type": "object",
    "additionalProperties": false,
    "properties": {
        "messages": {},
        "temperature": {},
        "top_p": {},
        "stop": {},
        "max_tokens": {},
        "presence_penalty": {},
        "frequency_penalty": {},
        "logit_bias": {},
        "user": { },
        "n": { },
        "function_call": { },
        "functions": { }
    },
    "allOf": [
        {
            "type": "object",
            "properties": {
                "temperature": {},
                "top_p": {},
                "stop": {},
                "max_tokens": {},
                "presence_penalty": {},
                "frequency_penalty": {},
                "logit_bias": {},
                "user": {}
            }
        },
        {
            "type": "object",
            "properties": {
                "messages": {},
                "n": {},
                "function_call": {},
                "functions": {}
            }
        }
    ]
}

If you're using JSON Schema draft 2019-09 or later, you can use the newer keyword unevaluatedProperties which performs the behavior described above, automatically.

如果你使用的是 JSON Schema draft 2019-09 或更高版本,你可以使用较新的关键字 unevaluatedProperties,它会自动执行上述描述的行为。

python 复制代码
{
    "$schema": "https://json-schema.org/draft/2019-09/schema",
    "type": "object",
    "unevaluatedProperties": false,
    "allOf": [
        {
            "type": "object",
            "properties": {
                "temperature": {},
                "top_p": {},
                "stop": {},
                "max_tokens": {},
                "presence_penalty": {},
                "frequency_penalty": {},
                "logit_bias": {},
                "user": {}
            }
        },
        {
            "type": "object",
            "properties": {
                "messages": {},
                "n": {},
                "function_call": {},
                "functions": {}
            }
        }
    ]
}

This example fails: 这个示例失败了

python 复制代码
{
    "messages": [
        {
            "role": "user", 
            "content": "Find beachfront hotels in San Diego for less than $300 a month with free breakfast."
        }
    ],
    "stackOverflow": -1
}
Invalid

# fails schema constraint https://json-schema.hyperjump.io/schema#/unevaluatedProperties

#/stackOverflow fails schema constraint https://json-schema.hyperjump.io/schema#/unevaluatedProperties
相关推荐
hellocode_5 小时前
如何评价deepseek-V3 VS OpenAI o1 自然语言处理成Sql的能力
人工智能·gpt·ai·chatgpt
12点一刻9 小时前
怎么理解编码器与解码器?
gpt·ai·编码器·解码器
昱感_sensemi10 小时前
“多维像素”多模态雷视融合技术构建自动驾驶超级感知能力|上海昱感微电子创始人蒋宏GADS演讲预告
人工智能·机器学习·ai·机器人·自动驾驶
Elastic 中国社区官方博客21 小时前
Elasticsearch:优化的标量量化 - 更好的二进制量化
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·lucene
AWM巴卡1 天前
如何稳定使用 O1 / O1 Pro,让“降智”现象不再困扰?
python·gpt·ai·chatgpt·软件工程·o1 pro
zaim11 天前
计算机的错误计算(二百零七)
人工智能·ai·大模型·llm·错误·误差/error·反余切/arccot
weixin_307779131 天前
Azure Synapse Analytics和Azure Databricks的共同点和区别
数据仓库·spark·云计算·azure
传说故事1 天前
CLIP代码相关问题
人工智能·python·ai·clip
wyw00001 天前
rknn环境搭建之docker篇
运维·docker·ai·容器
BugNest1 天前
深度学习的原理和应用
人工智能·深度学习·ai