题意:Azure OpenAI Swagger 验证失败与 APIM
问题背景:
I'm converting the Swagger for Azure OpenAI API Version 2023-07-01-preview from json to yaml
我正在将 Azure OpenAI API 版本 2023-07-01-preview 的 Swagger 从 JSON 转换为 YAML。
My Swagger looks like this 我的 Swagger 看起来是这样的
python
openapi: 3.0.1
info:
title: OpenAI Models API
description: ''
version: '123'
servers:
- url: https://def.com/openai
paths:
/gpt-35-turbo/chat/completions:
post:
tags:
- openai
summary: Creates a completion for the chat message
description: gpt-35-turbo-chat-completion
operationId: GPT_35_Turbo_ChatCompletions_Create
requestBody:
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/createChatCompletionRequest'
responses:
'200':
description: OK
content:
application/json:
schema:
$ref: '#/components/schemas/createChatCompletionResponse'
headers:
apim-request-id:
description: Request ID for troubleshooting purposes
schema:
type: string
default:
description: Service unavailable
content:
application/json:
schema:
$ref: '#/components/schemas/errorResponse'
headers:
apim-request-id:
description: Request ID for troubleshooting purposes
schema:
type: string
components:
schemas:
errorResponse:
type: object
properties:
error:
$ref: '#/components/schemas/error'
errorBase:
type: object
properties:
code:
type: string
message:
type: string
error:
type: object
allOf:
- $ref: '#/components/schemas/errorBase'
properties:
code:
type: string
message:
type: string
param:
type: string
type:
type: string
inner_error:
$ref: '#/components/schemas/innerError'
innerError:
description: Inner error with additional details.
type: object
properties:
code:
$ref: '#/components/schemas/innerErrorCode'
content_filter_results:
$ref: '#/components/schemas/contentFilterResults'
innerErrorCode:
description: Error codes for the inner error object.
enum:
- ResponsibleAIPolicyViolation
type: string
x-ms-enum:
name: InnerErrorCode
modelAsString: true
values:
- value: ResponsibleAIPolicyViolation
description: The prompt violated one of more content filter rules.
contentFilterResult:
type: object
properties:
severity:
type: string
enum:
- safe
- low
- medium
- high
x-ms-enum:
name: ContentFilterSeverity
modelAsString: true
values:
- value: safe
description: >-
General content or related content in generic or non-harmful
contexts.
- value: low
description: Harmful content at a low intensity and risk level.
- value: medium
description: Harmful content at a medium intensity and risk level.
- value: high
description: Harmful content at a high intensity and risk level.
filtered:
type: boolean
required:
- severity
- filtered
contentFilterResults:
type: object
description: >-
Information about the content filtering category (hate, sexual,
violence, self_harm), if it has been detected, as well as the severity
level (very_low, low, medium, high-scale that determines the intensity
and risk level of harmful content) and if it has been filtered or not.
properties:
sexual:
$ref: '#/components/schemas/contentFilterResult'
violence:
$ref: '#/components/schemas/contentFilterResult'
hate:
$ref: '#/components/schemas/contentFilterResult'
self_harm:
$ref: '#/components/schemas/contentFilterResult'
error:
$ref: '#/components/schemas/errorBase'
promptFilterResult:
type: object
description: Content filtering results for a single prompt in the request.
properties:
prompt_index:
type: integer
content_filter_results:
$ref: '#/components/schemas/contentFilterResults'
promptFilterResults:
type: array
description: >-
Content filtering results for zero or more prompts in the request. In a
streaming request, results for different prompts may arrive at different
times or in different orders.
items:
$ref: '#/components/schemas/promptFilterResult'
createChatCompletionRequest:
type: object
allOf:
- $ref: '#/components/schemas/chatCompletionsRequestCommon'
- properties:
messages:
description: >-
A list of messages comprising the conversation so far. [Example
Python
code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb).
type: array
minItems: 1
items:
$ref: '#/components/schemas/chatCompletionRequestMessage'
functions:
description: A list of functions the model may generate JSON inputs for.
type: array
minItems: 1
items:
$ref: '#/components/schemas/chatCompletionFunctions'
function_call:
description: >-
Controls how the model responds to function calls. "none" means
the model does not call a function, and responds to the
end-user. "auto" means the model can pick between an end-user or
calling a function. Specifying a particular function via
`{"name":\ "my_function"}` forces the model to call that
function. "none" is the default when no functions are present.
"auto" is the default if functions are present.
oneOf:
- type: string
enum:
- none
- auto
- type: object
properties:
name:
type: string
description: The name of the function to call.
required:
- name
'n':
type: integer
minimum: 1
maximum: 128
default: 1
example: 1
nullable: true
description: >-
How many chat completion choices to generate for each input
message.
required:
- messages
chatCompletionsRequestCommon:
type: object
properties:
temperature:
description: >-
What sampling temperature to use, between 0 and 2. Higher values
like 0.8 will make the output more random, while lower values like
0.2 will make it more focused and deterministic.
We generally recommend altering this or `top_p` but not both.
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
top_p:
description: >-
An alternative to sampling with temperature, called nucleus
sampling, where the model considers the results of the tokens with
top_p probability mass. So 0.1 means only the tokens comprising the
top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
stop:
description: Up to 4 sequences where the API will stop generating further tokens.
oneOf:
- type: string
nullable: true
- type: array
items:
type: string
nullable: false
minItems: 1
maxItems: 4
description: Array minimum size of 1 and maximum of 4
default: null
max_tokens:
description: >-
The maximum number of tokens allowed for the generated answer. By
default, the number of tokens the model can return will be (4096 -
prompt tokens).
type: integer
default: 4096
presence_penalty:
description: >-
Number between -2.0 and 2.0. Positive values penalize new tokens
based on whether they appear in the text so far, increasing the
model's likelihood to talk about new topics.
type: number
default: 0
minimum: -2
maximum: 2
frequency_penalty:
description: >-
Number between -2.0 and 2.0. Positive values penalize new tokens
based on their existing frequency in the text so far, decreasing the
model's likelihood to repeat the same line verbatim.
type: number
default: 0
minimum: -2
maximum: 2
logit_bias:
description: >-
Modify the likelihood of specified tokens appearing in the
completion. Accepts a json object that maps tokens (specified by
their token ID in the tokenizer) to an associated bias value from
-100 to 100. Mathematically, the bias is added to the logits
generated by the model prior to sampling. The exact effect will vary
per model, but values between -1 and 1 should decrease or increase
likelihood of selection; values like -100 or 100 should result in a
ban or exclusive selection of the relevant token.
type: object
nullable: true
user:
description: >-
A unique identifier representing your end-user, which can help Azure
OpenAI to monitor and detect abuse.
type: string
example: user-1234
nullable: false
chatCompletionRequestMessage:
type: object
properties:
role:
type: string
enum:
- system
- user
- assistant
- function
description: >-
The role of the messages author. One of `system`, `user`,
`assistant`, or `function`.
content:
type: string
description: >-
The contents of the message. `content` is required for all messages
except assistant messages with function calls.
name:
type: string
description: >-
The name of the author of this message. `name` is required if role
is `function`, and it should be the name of the function whose
response is in the `content`. May contain a-z, A-Z, 0-9, and
underscores, with a maximum length of 64 characters.
function_call:
type: object
description: >-
The name and arguments of a function that should be called, as
generated by the model.
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: >-
The arguments to call the function with, as generated by the
model in JSON format. Note that the model does not always
generate valid JSON, and may hallucinate parameters not defined
by your function schema. Validate the arguments in your code
before calling your function.
required:
- role
createChatCompletionResponse:
type: object
allOf:
- $ref: '#/components/schemas/chatCompletionsResponseCommon'
- properties:
prompt_filter_results:
$ref: '#/components/schemas/promptFilterResults'
choices:
type: array
items:
type: object
allOf:
- $ref: '#/components/schemas/chatCompletionChoiceCommon'
- properties:
message:
$ref: '#/components/schemas/chatCompletionResponseMessage'
content_filter_results:
$ref: '#/components/schemas/contentFilterResults'
required:
- id
- object
- created
- model
- choices
chatCompletionFunctions:
type: object
properties:
name:
type: string
description: >-
The name of the function to be called. Must be a-z, A-Z, 0-9, or
contain underscores and dashes, with a maximum length of 64.
description:
type: string
description: The description of what the function does.
parameters:
$ref: '#/components/schemas/chatCompletionFunctionParameters'
required:
- name
chatCompletionFunctionParameters:
type: object
description: >-
The parameters the functions accepts, described as a JSON Schema object.
See the [guide](/docs/guides/gpt/function-calling) for examples, and the
[JSON Schema
reference](https://json-schema.org/understanding-json-schema/) for
documentation about the format.
additionalProperties: true
chatCompletionsResponseCommon:
type: object
properties:
id:
type: string
object:
type: string
created:
type: integer
format: unixtime
model:
type: string
usage:
type: object
properties:
prompt_tokens:
type: integer
completion_tokens:
type: integer
total_tokens:
type: integer
required:
- prompt_tokens
- completion_tokens
- total_tokens
required:
- id
- object
- created
- model
chatCompletionChoiceCommon:
type: object
properties:
index:
type: integer
finish_reason:
type: string
chatCompletionResponseMessage:
type: object
properties:
role:
type: string
enum:
- system
- user
- assistant
- function
description: The role of the author of this message.
content:
type: string
description: The contents of the message.
function_call:
type: object
description: >-
The name and arguments of a function that should be called, as
generated by the model.
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: >-
The arguments to call the function with, as generated by the
model in JSON format. Note that the model does not always
generate valid JSON, and may hallucinate parameters not defined
by your function schema. Validate the arguments in your code
before calling your function.
required:
- role
securitySchemes:
apiKeyHeader:
type: apiKey
name: Ocp-Apim-Subscription-Key
in: header
apiKeyQuery:
type: apiKey
name: subscription-key
in: query
security:
- apiKeyHeader: [ ]
- apiKeyQuery: [ ]
I used this in azure apim and validating the content like this
我在 Azure APIM 中使用了这个,并像这样验证内容。
XML
<validate-content unspecified-content-type-action="ignore" max-size="102400" size-exceeded-action="detect" errors-variable-name="requestBodyValidation">
<content type="application/json" validate-as="json" action="prevent" allow-additional-properties="false" />
</validate-content>
Now I tried to give the request like the actual property
现在我尝试像实际属性一样提供请求。
java
{
"messages": [
{
"role": "user",
"content": "Find beachfront hotels in San Diego for less than $300 a month with free breakfast."
}
],
"temperature": 1,
"top_p": 1,
"stop": "",
"max_tokens": 2000,
"presence_penalty": 0,
"frequency_penalty": 0,
"logit_bias": {},
"user": "user-1234",
"n": 1,
"function_call" : "auto",
"functions" : [
{
"name": "search_hotels",
"description": "Retrieves hotels from the search index based on the parameters provided",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location of the hotel (i.e. Seattle, WA)"
},
"max_price": {
"type": "number",
"description": "The maximum price for the hotel"
},
"features": {
"type": "string",
"description": "A comma separated list of features (i.e. beachfront, free wifi, etc.)"
}
},
"required": ["location"]
}
}
]
}
And the APIM is giving the error like
而 APIM 给出了如下错误:
python
{
"statusCode": 400,
"message": "Body of the request does not conform to the definition which is associated with the content type application/json. JSON does not match all schemas from 'allOf'. Invalid schema indexes: 0, 1. Line: 42, Position: 1"
}
But the same request is working when I directly hit the azure openai.
但当我直接请求 Azure OpenAI 时,同样的请求是有效的。
What could be the possible issue here ?
这里可能是什么问题?
问题解决:
I believe your problem is this line allow-additional-properties="false"
我认为你遇到的问题是这一行 allow-additional-properties="false"
。
allow-additional-properties Boolean. For a JSON schema, specifies whether to implement a runtime override of the additionalProperties value configured in the schema:
- true: allow additional properties in the request or response body, even if the JSON schema's additionalProperties field is configured to not allow additional properties.
true
:允许在请求或响应主体中添加额外的属性,即使 JSON 模式的 additionalProperties
字段配置为不允许额外属性。
- false: do not allow additional properties in the request or response body, even if the JSON schema's additionalProperties field is configured to allow additional properties
false
:不允许在请求或响应主体中添加额外的属性,即使 JSON 模式的 additionalProperties
字段配置为允许额外属性。
If the attribute isn't specified, the policy validates additional properties according to configuration of the additionalProperties field in the schema.
如果未指定该属性,则策略将根据模式中
additionalProperties
字段的配置来验证额外属性。
source: 来源 https://learn.microsoft.com/en-us/azure/api-management/validate-content-policy#content-attributes
This property overrides your JSON Schema. Even though your allOf
definition does not use additionalProperties: false
, apim will inject this constraint to the root schema, which translates to
此属性会覆盖你的 JSON Schema。即使你的 allOf
定义没有使用 additionalProperties: false
,APIM 仍会将此约束注入到根模式中,这会转化为
Kotlin
{
"type": "object",
"additionalProperties": false,
"allOf": [{...}, {...}]
}
This schema doesn't allow any properties to be validated because no properties are defined at the root.
该模式不允许验证任何属性,因为根本没有定义属性。
The only valid schemas in this situation would be
在这种情况下,唯一有效的模式是
Kotlin
{}
OR
true
There are a few ways to tackle this but IMHO, the best option is to use the schema definition, rather than the apim attribute because you're introducing constraints on the schema where they are not defined. If someone else were to review the schema, they would run into the same issue you are having.
解决这个问题有几种方法,但依我看来,最好的选择是使用模式定义,而不是使用 APIM 属性,因为你在模式中引入了未定义的约束。如果其他人来审查这个模式,他们也会遇到你现在面临的相同问题。
This is where it may get tricky for you depending on which version of JSON Schema is supported in APIM and which version you are using.
这可能会变得棘手,具体取决于 APIM 支持的 JSON Schema 版本以及你正在使用的版本。
Draft-04 - 07 requires some massaging to the schema, in most circumstances, to achieve the desired behavior of using allOf
with additionalProperties": false
在大多数情况下,Draft-04 到 Draft-07 需要对模式进行一些调整,以实现使用 allOf
与 additionalProperties: false
的预期行为。
- turn off the content attribute in your apim validation
在你的 APIM 验证中关闭 content
属性。
- add all properties of the first depth of subschemas to the root with an empty schema. This will allow the validator to recognize those properties at the root level to satisfy
additionalProperties
将所有子模式第一层的属性添加到根模式中,并使用一个空模式。这将允许验证器在根级别识别这些属性,以满足 additionalProperties
的要求。
python
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"additionalProperties": false,
"properties": {
"messages": {},
"temperature": {},
"top_p": {},
"stop": {},
"max_tokens": {},
"presence_penalty": {},
"frequency_penalty": {},
"logit_bias": {},
"user": { },
"n": { },
"function_call": { },
"functions": { }
},
"allOf": [
{
"type": "object",
"properties": {
"temperature": {},
"top_p": {},
"stop": {},
"max_tokens": {},
"presence_penalty": {},
"frequency_penalty": {},
"logit_bias": {},
"user": {}
}
},
{
"type": "object",
"properties": {
"messages": {},
"n": {},
"function_call": {},
"functions": {}
}
}
]
}
If you're using JSON Schema draft 2019-09 or later, you can use the newer keyword unevaluatedProperties
which performs the behavior described above, automatically.
如果你使用的是 JSON Schema draft 2019-09 或更高版本,你可以使用较新的关键字 unevaluatedProperties
,它会自动执行上述描述的行为。
python
{
"$schema": "https://json-schema.org/draft/2019-09/schema",
"type": "object",
"unevaluatedProperties": false,
"allOf": [
{
"type": "object",
"properties": {
"temperature": {},
"top_p": {},
"stop": {},
"max_tokens": {},
"presence_penalty": {},
"frequency_penalty": {},
"logit_bias": {},
"user": {}
}
},
{
"type": "object",
"properties": {
"messages": {},
"n": {},
"function_call": {},
"functions": {}
}
}
]
}
This example fails: 这个示例失败了
python
{
"messages": [
{
"role": "user",
"content": "Find beachfront hotels in San Diego for less than $300 a month with free breakfast."
}
],
"stackOverflow": -1
}
Invalid
# fails schema constraint https://json-schema.hyperjump.io/schema#/unevaluatedProperties
#/stackOverflow fails schema constraint https://json-schema.hyperjump.io/schema#/unevaluatedProperties