二分查找5️⃣-山脉数组的封顶索引

题目链接: 852. 山脉数组的峰顶索引

题目描述:

给定一个长度为 n 的整数 山脉 数组 arr ,其中的值递增到一个 峰值元素 然后递减。

返回峰值元素的下标。

你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。

示例 1:

复制代码
输入:arr = [0,1,0]
输出:1

示例 2:

复制代码
输入:arr = [0,2,1,0]
输出:1

示例 3:

复制代码
输入:arr = [0,10,5,2]
输出:1

提示:

  • 3 <= arr.length <= 105

  • 0 <= arr[i] <= 106

  • 题目数据 保证 arr 是一个山脉数组

解法一(暴力查找):

算法思路:

◦ 峰顶的特点:比两侧的元素都要大。

◦ 因此,我们可以遍历数组内的每一个元素,找到某一个元素比两边的元素大即可。

cpp 复制代码
class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        for(int i = 1 ; i < arr.size()-1; i++){
            // 遍历数组内每一个元素,直到找到峰顶
            if(arr[i] > arr[i-1] && arr[i] > arr[i+1])
            return i;
        }

        // 为了处理oj需要控制所有路径都有返回值
        return -1;
    }
};

解法二(二分查找):

算法思路:

本题的数组不是有序数组,但我们依然可以使用二分查找,原因是因为我们发现了**"二段性"**,对于山峰来说,我们会发现封顶的值是最大,对于封顶左边来说,后一个数比前一个数大;对于封顶右边来说,后一个数比前一个数小,因此我们可以分以下三种情况:

◦ 如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;

◦ 如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;

◦ 如果 mid 位置就是山峰,直接返回结果。

cpp 复制代码
class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        int left = 0, right = arr.size()-1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(arr[mid] < arr[mid+1])
                left = mid + 1;
            else
                right = mid ;
        }
        return left;
    }
};
相关推荐
曦月逸霜18 分钟前
第34次CCF-CSP认证真题解析(目标300分做法)
数据结构·c++·算法
海的诗篇_1 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
自动驾驶小卡2 小时前
A*算法实现原理以及实现步骤(C++)
算法
Unpredictable2222 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
编程绿豆侠2 小时前
力扣HOT100之多维动态规划:1143. 最长公共子序列
算法·leetcode·动态规划
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
fail_to_code3 小时前
递归法的递归函数何时需要返回值
算法
C137的本贾尼3 小时前
(每日一道算法题)二叉树剪枝
算法·机器学习·剪枝
BUG收容所所长4 小时前
栈的奇妙世界:从冰棒到算法的华丽转身
前端·javascript·算法