Elasticsearch 桶(Bucket)聚合详解及示例

在 Elasticsearch 中,桶(Bucket)聚合是一种强大的工具,它允许我们对数据进行分组并统计每组的数量。这种聚合类型对于理解数据的分布和进行分组统计非常有用。本文将详细介绍 Elasticsearch 的桶聚合,并提供完整的示例和解释。

桶聚合基础

桶聚合通过将数据分入不同的桶中来工作。每个桶代表一个分组,分组的依据可以是字段值、日期范围或其他标准。Elasticsearch 中常见的桶聚合包括:

  • Terms Aggregation:基于字段的词条值进行分组。
  • Date Histogram Aggregation:基于日期的范围进行分组。

聚合的必要元素

  • 聚合名称:为聚合定义的名称,用于在结果中标识。
  • 聚合类型 :指定使用的聚合类型,如 terms
  • 聚合字段:指定聚合应用的字段。

聚合的可配置属性

  • size:指定返回的桶数量。
  • order :指定桶的排序方式,可以是基于 _count(每个桶中的文档数量)或其他度量聚合。
  • field:参与聚合的字段。

示例:Terms Aggregation

假设我们有一个酒店数据索引,我们想要统计不同酒店品牌的分布情况。

DSL 查询

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 10
      }
    }
  }
}

解释

  • size: 0 表示我们不需要原始文档的列表,只关心聚合结果。
  • aggs:定义聚合的区域。
  • brandAgg:为聚合操作定义的名称。
  • terms:指定聚合类型为词条聚合。
  • field: "brand":指定聚合字段为 brand
  • size: 10:限制返回的桶数量,这里最多返回 10 个品牌。

桶聚合结果排序

默认情况下,桶聚合结果会根据 _count(桶内的文档数量)降序排序。我们可以修改排序方式:

DSL 查询

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc"
        },
        "size": 20
      }
    }
  }
}

解释

  • order:指定排序方式,这里设置为按照 _count 升序排列。

桶聚合限定范围

桶聚合可以结合查询条件 query 来限定聚合的文档范围:

DSL 查询

json 复制代码
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200
      }
    }
  },
  "size": 0,
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

解释

  • query:定义查询条件,这里使用 range 查询来限定价格不超过 200 的文档。
  • 聚合将只针对这些文档进行。

结语

桶聚合是 Elasticsearch 中进行数据分组统计的重要工具。通过本篇文章的示例和解释,你应该对如何使用桶聚合有了更深入的理解。无论是统计不同品牌的数量,还是根据特定条件对数据进行分组,桶聚合都能提供灵活且强大的支持。掌握桶聚合的使用,将有助于你更有效地进行数据分析和探索。希望本文能够帮助你在实际项目中更好地利用 Elasticsearch 的聚合功能。

相关推荐
青鱼入云3 小时前
【面试场景题】电商订单系统分库分表方案设计
大数据·面试·职场和发展
在未来等你4 小时前
Kafka面试精讲 Day 12:副本同步与数据一致性
大数据·分布式·面试·kafka·消息队列
云边云科技4 小时前
门店网络重构:告别“打补丁”,用“云网融合”重塑数字竞争力!
大数据·人工智能·安全·智能路由器·零售
渣渣盟5 小时前
Spark核心:单跳转换率计算全解析
大数据·spark·scala·apache
edisao5 小时前
[特殊字符] 从助手到引擎:基于 GPT 的战略协作系统演示
大数据·人工智能·gpt
IT毕设梦工厂6 小时前
大数据毕业设计选题推荐-基于大数据的国家医用消耗选品采集数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
华略创新7 小时前
利用数据分析提升管理决策水平
大数据·数据分析·crm·管理系统·软件
pingao1413787 小时前
PG-210-HI 山洪预警系统呼叫端:筑牢山区应急预警 “安全防线”
大数据·人工智能·科技
庄小焱7 小时前
大数据存储域——Kafka设计原理
大数据·kafka·消息中间件
Elastic 中国社区官方博客8 小时前
带地图的 RAG:多模态 + 地理空间 在 Elasticsearch 中
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索