【流媒体】RTMPDump—RTMP_Connect函数(握手、网络连接)

目录

  • [1. RTMP_Connect函数](#1. RTMP_Connect函数)
    • [1.1 网络层连接(RTMP_Connect0)](#1.1 网络层连接(RTMP_Connect0))
    • [1.2 RTMP连接(RTMP_Connect1)](#1.2 RTMP连接(RTMP_Connect1))
      • [1.2.1 握手(HandShake)](#1.2.1 握手(HandShake))
      • [1.2.2 RTMP的NetConnection(SendConnectPacket)](#1.2.2 RTMP的NetConnection(SendConnectPacket))
  • 2.小结

RTMP协议相关:
【流媒体】RTMP协议概述
【流媒体】RTMP协议的数据格式
【流媒体】RTMP协议的消息类型
【流媒体】RTMPDump---主流程简单分析

参考雷博的系列文章(可以从一篇链接到其他文章):
RTMPdump 源代码分析 1: main()函数

前面进行了RTMPDump主流程的分析,包括初始化和一些解析过程,现在分析RTMPDump是如何进行握手和网络连接,这是进行RTMP通信的第一步

1. RTMP_Connect函数

函数首先添加连接的地址,如果设置socksport,则使用socks连接,否则直接连接;随后,调用了RTMP_Connect0()和RTMP_Connect1()两个函数实现连接

c 复制代码
int
RTMP_Connect(RTMP * r, RTMPPacket * cp)
{
	struct sockaddr_in service;
	if (!r->Link.hostname.av_len)
		return FALSE;

	memset(&service, 0, sizeof(struct sockaddr_in));
	service.sin_family = AF_INET;

	if (r->Link.socksport) // 如果设置了socksport,则通过socks连接
	{
		/* Connect via SOCKS */
		if (!add_addr_info(&service, &r->Link.sockshost, r->Link.socksport))
			return FALSE;
	}
	else // 否则直接连接
	{
		/* Connect directly */
		if (!add_addr_info(&service, &r->Link.hostname, r->Link.port))
			return FALSE;
	}
	// 网络层TCP连接
	if (!RTMP_Connect0(r, (struct sockaddr*) & service))
		return FALSE;

	r->m_bSendCounter = TRUE;
	// 建立RTMP连接
	return RTMP_Connect1(r, cp);
}

1.1 网络层连接(RTMP_Connect0)

RTMP_Connect0实现了TCP连接功能,使得client和server在网络层能够进行通信,首先使用socket()函数初始化协议为TCP,随后使用connect()进行TCP连接

c 复制代码
int
RTMP_Connect0(RTMP * r, struct sockaddr* service)
{
	int on = 1;
	r->m_sb.sb_timedout = FALSE;
	r->m_pausing = 0;
	r->m_fDuration = 0.0;

	r->m_sb.sb_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); // 初始化为TCP连接
	if (r->m_sb.sb_socket != -1)
	{
		if (connect(r->m_sb.sb_socket, service, sizeof(struct sockaddr)) < 0) // 进行TCP连接
		{
			int err = GetSockError();
			RTMP_Log(RTMP_LOGERROR, "%s, failed to connect socket. %d (%s)",
				__FUNCTION__, err, strerror(err));
			RTMP_Close(r);
			return FALSE;
		}

		if (r->Link.socksport)
		{
			RTMP_Log(RTMP_LOGDEBUG, "%s ... SOCKS negotiation", __FUNCTION__);
			if (!SocksNegotiate(r))
			{
				RTMP_Log(RTMP_LOGERROR, "%s, SOCKS negotiation failed.", __FUNCTION__);
				RTMP_Close(r);
				return FALSE;
			}
		}
	}
	else
	{
		RTMP_Log(RTMP_LOGERROR, "%s, failed to create socket. Error: %d", __FUNCTION__,
			GetSockError());
		return FALSE;
	}

	/* set timeout */
	{
		SET_RCVTIMEO(tv, r->Link.timeout);
		if (setsockopt
		(r->m_sb.sb_socket, SOL_SOCKET, SO_RCVTIMEO, (char*)& tv, sizeof(tv)))
		{
			RTMP_Log(RTMP_LOGERROR, "%s, Setting socket timeout to %ds failed!",
				__FUNCTION__, r->Link.timeout);
		}
	}

	setsockopt(r->m_sb.sb_socket, IPPROTO_TCP, TCP_NODELAY, (char*)& on, sizeof(on));

	return TRUE;
}

1.2 RTMP连接(RTMP_Connect1)

该函数主要调用了两个函数:(1)握手(HandShake);(2)RTMP的NetConnection(SendConnectPacket)

c 复制代码
int
RTMP_Connect1(RTMP * r, RTMPPacket * cp)
{
	if (r->Link.protocol & RTMP_FEATURE_SSL)
	{
#if defined(CRYPTO) && !defined(NO_SSL)
		TLS_client(RTMP_TLS_ctx, r->m_sb.sb_ssl);
		TLS_setfd(r->m_sb.sb_ssl, r->m_sb.sb_socket);
		if (TLS_connect(r->m_sb.sb_ssl) < 0)
		{
			RTMP_Log(RTMP_LOGERROR, "%s, TLS_Connect failed", __FUNCTION__);
			RTMP_Close(r);
			return FALSE;
		}
#else
		RTMP_Log(RTMP_LOGERROR, "%s, no SSL/TLS support", __FUNCTION__);
		RTMP_Close(r);
		return FALSE;

#endif
	}
	if (r->Link.protocol & RTMP_FEATURE_HTTP)
	{
		r->m_msgCounter = 1;
		r->m_clientID.av_val = NULL;
		r->m_clientID.av_len = 0;
		HTTP_Post(r, RTMPT_OPEN, "", 1);
		if (HTTP_read(r, 1) != 0)
		{
			r->m_msgCounter = 0;
			RTMP_Log(RTMP_LOGDEBUG, "%s, Could not connect for handshake", __FUNCTION__);
			RTMP_Close(r);
			return 0;
		}
		r->m_msgCounter = 0;
	}
	RTMP_Log(RTMP_LOGDEBUG, "%s, ... connected, handshaking", __FUNCTION__);
	// 1. 握手
	if (!HandShake(r, TRUE))
	{
		RTMP_Log(RTMP_LOGERROR, "%s, handshake failed.", __FUNCTION__);
		RTMP_Close(r);
		return FALSE;
	}
	RTMP_Log(RTMP_LOGDEBUG, "%s, handshaked", __FUNCTION__);
	// 2. RTMP的NetConnection
	if (!SendConnectPacket(r, cp))
	{
		RTMP_Log(RTMP_LOGERROR, "%s, RTMP connect failed.", __FUNCTION__);
		RTMP_Close(r);
		return FALSE;
	}
	return TRUE;
}

1.2.1 握手(HandShake)

握手是RTMP协议实现的第一个步骤,需要重点分析。值得一提的是,在雷博记录的文章当中(RTMPdump(libRTMP)源代码分析 4: 连接第一步------握手(Hand Shake)),记录的应该是包含加密过程的握手函数,不包含加密过程的握手函数应该在rtmp.c中

前面自己记录的关于握手过程的文章为【流媒体】RTMP协议概述,握手的流程为

RTMPDump中关于非加密握手的代码,如下所示

c 复制代码
static int
HandShake(RTMP * r, int FP9HandShake)
{
	int i;
	uint32_t uptime, suptime;
	int bMatch;
	char type;
	// clientbuf当中包含了C0和C1数据报,并且同时发出去
	char clientbuf[RTMP_SIG_SIZE + 1], *clientsig = clientbuf + 1; // RTMP_SIG_SIZE = 1536
	char serversig[RTMP_SIG_SIZE];
	// 1. C0数据报
	// 0x03表示客户端所期望的版本号,即C0
	clientbuf[0] = 0x03;		/* not encrypted */
	// 2. C1数据报
	// 获取当前的timestamp并且转换成为大端存储
	uptime = htonl(RTMP_GetTime());
	// 将时间戳拷贝到clientsig当中
	memcpy(clientsig, &uptime, 4);
	// 填充4个字节的0值
	memset(&clientsig[4], 0, 4);

#ifdef _DEBUG
	for (i = 8; i < RTMP_SIG_SIZE; i++)
		clientsig[i] = 0xff;
#else
	for (i = 8; i < RTMP_SIG_SIZE; i++) // 填充1536 - 8 = 1528个随机字节
		clientsig[i] = (char)(rand() % 256);
#endif
	// 3. 发送C0和C1数据报
	if (!WriteN(r, clientbuf, RTMP_SIG_SIZE + 1))
		return FALSE;
	// 4. 接收S0数据报,即server返回的可以使用的RTMP版本号
	if (ReadN(r, &type, 1) != 1)	/* 0x03 or 0x06 */
		return FALSE;

	RTMP_Log(RTMP_LOGDEBUG, "%s: Type Answer   : %02X", __FUNCTION__, type);
	// 检查client期望的RTMP版本号是否与server所支持的RTMP版本号匹配
	if (type != clientbuf[0])
		RTMP_Log(RTMP_LOGWARNING, "%s: Type mismatch: client sent %d, server answered %d",
			__FUNCTION__, clientbuf[0], type);
	// 5. 接收S1数据报
	if (ReadN(r, serversig, RTMP_SIG_SIZE) != RTMP_SIG_SIZE)
		return FALSE;

	/* decode server response */
	// 解析接收数据报时间戳
	memcpy(&suptime, serversig, 4);
	suptime = ntohl(suptime);

	RTMP_Log(RTMP_LOGDEBUG, "%s: Server Uptime : %d", __FUNCTION__, suptime);
	RTMP_Log(RTMP_LOGDEBUG, "%s: FMS Version   : %d.%d.%d.%d", __FUNCTION__,
		serversig[4], serversig[5], serversig[6], serversig[7]);

	/* 2nd part of handshake */
	// 6. 发送C2数据报
	// 发送出去的C2数据报就是接收到的S1数据报
	if (!WriteN(r, serversig, RTMP_SIG_SIZE))
		return FALSE;
	// 7. 读取S2数据报
	if (ReadN(r, serversig, RTMP_SIG_SIZE) != RTMP_SIG_SIZE)
		return FALSE;
	// 检查S2数据报和C1数据报的timestamp是否匹配
	bMatch = (memcmp(serversig, clientsig, RTMP_SIG_SIZE) == 0);
	if (!bMatch)
	{
		RTMP_Log(RTMP_LOGWARNING, "%s, client signature does not match!", __FUNCTION__);
	}
	return TRUE;
}

代码基本就是按照标准来写的,唯一需要注意的是C0和C1数据报是同时发送的,C0和C1都存储在clientbuf当中

1.2.2 RTMP的NetConnection(SendConnectPacket)

该函数的主要作用是进行NetConnection,再回顾一下NetConnection的流程图

从流程图中看,client在进行握手成功之后,会向server发送一个 "connect" 的命令,申请进行RTMP连接,而SendConnectPacket实现的功能就是发送一个 "connect" 的命令。另外,也回顾一下connect命令当中可以携带的参数,这些参数在SendConnectPacket当中都有考虑到

RTMPDump会定义所需要使用的命令,例如connect命令会被定义成为 av_connect,如下所示

c 复制代码
#define AVC(str)	{str,sizeof(str)-1}
#define SAVC(x)	static const AVal av_##x = AVC(#x)

// connect 命令中使用的名值对对象的描述
SAVC(app);
SAVC(connect);	// connect命令,{"connet", sizeof(connect) - 1}
SAVC(flashVer);
SAVC(swfUrl);
SAVC(pageUrl);
SAVC(tcUrl);
SAVC(fpad);
SAVC(capabilities);
SAVC(audioCodecs);
SAVC(videoCodecs);
SAVC(videoFunction);
SAVC(objectEncoding);
SAVC(secureToken);
SAVC(secureTokenResponse);
SAVC(type);
SAVC(nonprivate);

SendConnectPacket函数用于发送一个connect命令,会写入connect当中可能会写入的参数,随后使用RTMP_SendPacket()将信息发送出去

c 复制代码
static int
SendConnectPacket(RTMP * r, RTMPPacket * cp)
{
	RTMPPacket packet;
	// pend是尾缀
	char pbuf[4096], * pend = pbuf + sizeof(pbuf);
	char* enc;

	if (cp)
		return RTMP_SendPacket(r, cp, TRUE);
	// 块流ID设置为3(似乎在标准文档中没有说是多少?)
	packet.m_nChannel = 0x03;	/* control channel (invoke) */
	/*
		#define RTMP_PACKET_SIZE_LARGE    0			// 
		#define RTMP_PACKET_SIZE_MEDIUM   1			// 
		#define RTMP_PACKET_SIZE_SMALL    2			// 
		#define RTMP_PACKET_SIZE_MINIMUM  3			//
	*/
	packet.m_headerType = RTMP_PACKET_SIZE_LARGE;	// m_headerType对应于Basic Header中的fmt
	// RTMP_PACKET_TYPE_INVOKE = 0x14 = 20,表明这是一条命令消息,并且以AMF0的格式进行编码
	packet.m_packetType = RTMP_PACKET_TYPE_INVOKE;	// m_packetType对应于Messge Header中的message type id
	packet.m_nTimeStamp = 0;
	packet.m_nInfoField2 = 0;
	packet.m_hasAbsTimestamp = 0;
	packet.m_body = pbuf + RTMP_MAX_HEADER_SIZE;	// body = 4096 - 18

	enc = packet.m_body;

	/*
		+-----------------+-----------+-------------+------------+------------
		| RTMP Max Header | Data Type | Data Length | Data Value | 	  xxx
		|    (18 Bytes)   | (1 Bytes) | (x Bytes)   | (L Bytes)  | (.. Bytes) 
		+-----------------+-----------+-------------+------------+------------
	   pbuf              enc         
		            (packet.m_body)
	*/
	// 下面会写入packet.m_body的信息,这些信息用于connect
	// av_connect = { "connect", sizeof("connect") - 1 };
	enc = AMF_EncodeString(enc, pend, &av_connect); // 将connect命令写入到enc中
	enc = AMF_EncodeNumber(enc, pend, ++r->m_numInvokes); // 将呼叫的次数写入到enc中
	*enc++ = AMF_OBJECT; // 写入data类型为object
	// 写入app信息
	enc = AMF_EncodeNamedString(enc, pend, &av_app, &r->Link.app);
	if (!enc)
		return FALSE;
	if (r->Link.protocol & RTMP_FEATURE_WRITE)
	{
		enc = AMF_EncodeNamedString(enc, pend, &av_type, &av_nonprivate);
		if (!enc)
			return FALSE;
	}
	if (r->Link.flashVer.av_len)
	{
		enc = AMF_EncodeNamedString(enc, pend, &av_flashVer, &r->Link.flashVer);
		if (!enc)
			return FALSE;
	}
	if (r->Link.swfUrl.av_len)
	{
		enc = AMF_EncodeNamedString(enc, pend, &av_swfUrl, &r->Link.swfUrl);
		if (!enc)
			return FALSE;
	}
	if (r->Link.tcUrl.av_len)
	{
		enc = AMF_EncodeNamedString(enc, pend, &av_tcUrl, &r->Link.tcUrl);
		if (!enc)
			return FALSE;
	}
	if (!(r->Link.protocol & RTMP_FEATURE_WRITE))
	{
		enc = AMF_EncodeNamedBoolean(enc, pend, &av_fpad, FALSE);
		if (!enc)
			return FALSE;
		enc = AMF_EncodeNamedNumber(enc, pend, &av_capabilities, 15.0);
		if (!enc)
			return FALSE;
		enc = AMF_EncodeNamedNumber(enc, pend, &av_audioCodecs, r->m_fAudioCodecs);
		if (!enc)
			return FALSE;
		enc = AMF_EncodeNamedNumber(enc, pend, &av_videoCodecs, r->m_fVideoCodecs);
		if (!enc)
			return FALSE;
		enc = AMF_EncodeNamedNumber(enc, pend, &av_videoFunction, 1.0);
		if (!enc)
			return FALSE;
		if (r->Link.pageUrl.av_len)
		{
			enc = AMF_EncodeNamedString(enc, pend, &av_pageUrl, &r->Link.pageUrl);
			if (!enc)
				return FALSE;
		}
	}
	if (r->m_fEncoding != 0.0 || r->m_bSendEncoding)
	{	/* AMF0, AMF3 not fully supported yet */
		enc = AMF_EncodeNamedNumber(enc, pend, &av_objectEncoding, r->m_fEncoding);
		if (!enc)
			return FALSE;
	}
	if (enc + 3 >= pend)
		return FALSE;
	*enc++ = 0;
	*enc++ = 0;			/* end of object - 0x00 0x00 0x09 */
	*enc++ = AMF_OBJECT_END; // 写完object

	/* add auth string */
	// 写认证信息
	if (r->Link.auth.av_len)
	{
		enc = AMF_EncodeBoolean(enc, pend, r->Link.lFlags & RTMP_LF_AUTH);
		if (!enc)
			return FALSE;
		enc = AMF_EncodeString(enc, pend, &r->Link.auth);
		if (!enc)
			return FALSE;
	}
	if (r->Link.extras.o_num)
	{
		int i;
		for (i = 0; i < r->Link.extras.o_num; i++)
		{
			enc = AMFProp_Encode(&r->Link.extras.o_props[i], enc, pend);
			if (!enc)
				return FALSE;
		}
	}
	packet.m_nBodySize = enc - packet.m_body;

	return RTMP_SendPacket(r, &packet, TRUE);
}

RTMP_SendPacket()的实现如下所示,基本就是按照标准文档来写入chunk信息并发送,关键位置有注释,大体的步骤为:

(1)确定头信息内容

(a)确定message header size

(b)确定basic header size

(c)确定extended timestamp

(2)写入头信息内容

(a)写入basic header

(b)写入message header中的timestamp(3字节)

(c)写入bodySize(即msg length)(3字节)

(d)写入packetType(即msg type id)(1字节)

(e)写入最后4字节(即message stram id)(4字节)

(f)写入扩展的时间戳(4字节)

(3)发送信息

关于代码的实现,这里有一个小点:

在代码中,是以chunk的格式来存储所有格式的,而不是以message的格式,但最后还有一个分包的操作。按理来说,以message格式存储才需要分包,这里相当于是把一个大的chunk分成了多个小的chunk来发送了

c 复制代码
int
RTMP_SendPacket(RTMP * r, RTMPPacket * packet, int queue)
{
	const RTMPPacket* prevPacket;
	uint32_t last = 0;
	int nSize;
	int hSize, cSize;
	char* header, * hptr, * hend, hbuf[RTMP_MAX_HEADER_SIZE], c;
	uint32_t t;
	char* buffer, * tbuf = NULL, * toff = NULL;
	int nChunkSize;
	int tlen;
	// 检查channel数量
	if (packet->m_nChannel >= r->m_channelsAllocatedOut)
	{
		int n = packet->m_nChannel + 10;
		RTMPPacket** packets = realloc(r->m_vecChannelsOut, sizeof(RTMPPacket*) * n);
		if (!packets) {
			free(r->m_vecChannelsOut);
			r->m_vecChannelsOut = NULL;
			r->m_channelsAllocatedOut = 0;
			return FALSE;
		}
		r->m_vecChannelsOut = packets;
		memset(r->m_vecChannelsOut + r->m_channelsAllocatedOut, 0, sizeof(RTMPPacket*) * (n - r->m_channelsAllocatedOut));
		r->m_channelsAllocatedOut = n;
	}

	prevPacket = r->m_vecChannelsOut[packet->m_nChannel];

	/*
		Chunk Format:

		+--------------+----------------+--------------------+-----------------
		| Basic Header | Message Header | Extended Timestamp | Chunk Data....
		+--------------+----------------+--------------------+-----------------
		|<----------------- Chunk Header ------------------->|

		(1) Basic Header
		 (a) type 1
			 0 1 2 3 4 5 6 7
			+---------------+
			|fmt|  cs id    | 
			+---------------+
		 (b) type 2
			0				1
			0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
			+---------------+-------------+
			|fmt|     0     | cs id - 64  |
			+---------------+-------------+
		 (c) type 3
		   	0				1               2
			0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 
			+---------------+------------------------------+
			|fmt|     1     |         cs id - 64           |
			+---------------+------------------------------+
		(2) Message Header
		  (a) type 0 (11 bytes)
		    0				1               2               3
			0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
			+----------------------------------------------+---------------+
			|					timestamp				   | message length|
			+----------------------------------------------+---------------+
			|    message length (cont)    |	message type id| msg stream id |
			+----------------------------------------------+---------------+
			|		     message stream id(cont)		   |
			+----------------------------------------------+
		  (b) type 1 (7 bytes)
		    0				1               2               3
			0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
			+----------------------------------------------+---------------+
			|			     timestamp delta		       | message length|
			+----------------------------------------------+---------------+
			|    message length (cont)    |	message type id|
			+----------------------------------------------+
		  (c) type 2 (3 bytes)
		    0				1               2               
			0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 
			+----------------------------------------------+
			|			     timestamp delta		       |
			+----------------------------------------------+
		  (d) type 3 (no message header)
	*/
	// 1. 确定头信息内容
	// m_headerType对应于BasicHeader中的fmt字段,表示后续msg的格式
	// m_packetType对应于Message Header中的message type id,表示消息的类型
	if (prevPacket && packet->m_headerType != RTMP_PACKET_SIZE_LARGE)
	{
		// 前面packet的数据是否和当前packet数据有相同之处,如果有,则去掉当前packet的冗余信息
		/* compress a bit by using the prev packet's attributes */
		if (prevPacket->m_nBodySize == packet->m_nBodySize
			&& prevPacket->m_packetType == packet->m_packetType
			&& packet->m_headerType == RTMP_PACKET_SIZE_MEDIUM)
			packet->m_headerType = RTMP_PACKET_SIZE_SMALL;

		if (prevPacket->m_nTimeStamp == packet->m_nTimeStamp
			&& packet->m_headerType == RTMP_PACKET_SIZE_SMALL)
			packet->m_headerType = RTMP_PACKET_SIZE_MINIMUM;
		last = prevPacket->m_nTimeStamp;
	}

	if (packet->m_headerType > 3)	/* sanity */
	{
		RTMP_Log(RTMP_LOGERROR, "sanity failed!! trying to send header of type: 0x%02x.",
			(unsigned char)packet->m_headerType);
		return FALSE;
	}
	// static const int packetSize[] = { 12, 8, 4, 1 };
	/*
		问:标准当中的msg header size为11, 7, 3, 0,为什么在这里加1?
		答:RTMP数据报中包括Basic Header、Message Header和Chunk Data,其中Basic Header由fmt和chunk stream id组成,
			fmt占据2比特,chunk stream id指示当前chunk在当前stream当中位于第几个位置,如果是 (2, 63],则为1字节,这样packetSize就加1
	*/
	// nSize : message header size
	// (1.a) 确定message header size
	nSize = packetSize[packet->m_headerType];
	hSize = nSize; cSize = 0;
	t = packet->m_nTimeStamp - last;

	if (packet->m_body)
	{
		header = packet->m_body - nSize; // header起始地址
		hend = packet->m_body; // header结束地址
	}
	else
	{
		header = hbuf + 6;	// header size = 6
		hend = hbuf + sizeof(hbuf);
	}
	/*
		stream_id的范围给出了chunk basic header的大小
		+------------+--------------+
		|	range	 |	   Bytes	|
		+------------+--------------+
		|  (2, 63]	 |	 1  byte	|
		+------------+--------------+
		| (63, 319]	 |	 2  Bytes	|
		+------------+--------------+
		|(319, 65599]|	 3  Bytes	|
		+------------+--------------+
	*/
	// chunk stream id的检查
	// cSize描述Basic header的大小
	// (1.b) 确定basic header size
	if (packet->m_nChannel > 319)
		cSize = 2;  // chunk basic header为3个字节
	else if (packet->m_nChannel > 63)
		cSize = 1;	// chunk basic header为2个字节
	if (cSize)
	{
		header -= cSize;
		hSize += cSize;
	}
	// (1.c) 确定extended timestamp
	if (t >= 0xffffff) // 时间戳过大,需要增加额外的extended timestamp
	{
		header -= 4;
		hSize += 4;
		RTMP_Log(RTMP_LOGWARNING, "Larger timestamp than 24-bit: 0x%x", t);
	}

	// 2. 写入头信息
	hptr = header;
	c = packet->m_headerType << 6; // 高2位设置为fmt
	switch (cSize)
	{
	// 低6位设置成为stream id
	case 0:
		c |= packet->m_nChannel;
		break;
	case 1:
		break;
	case 2:
		c |= 1;
		break;
	}
	// (2.a) 写入basic header
	*hptr++ = c;
	// 如果cSize不为0,说明chunk basic header为2字节或者3字节,需要写入0值或者1值
	if (cSize)
	{
		int tmp = packet->m_nChannel - 64;
		*hptr++ = tmp & 0xff;
		if (cSize == 2)
			* hptr++ = tmp >> 8;
	}

	// (2.b) 写入message header中的timestamp,3字节
	if (nSize > 1)
	{
		// 用于编码24位整数值,将其从主机字节序转换为AMF格式所使用的网络字节序
		hptr = AMF_EncodeInt24(hptr, hend, t > 0xffffff ? 0xffffff : t);
	}
	
	if (nSize > 4)
	{
		// (2.c) 写入bodySize(msg length),3字节
		hptr = AMF_EncodeInt24(hptr, hend, packet->m_nBodySize);
		// (2.d) 写入packetType(msg type id),1字节
		*hptr++ = packet->m_packetType;
	}

	// (2.e) 写入最后4字节 (message stram id)
	if (nSize > 8) // 将一个整数以小端序(little-endian)的方式进行编码为32位的整数
		hptr += EncodeInt32LE(hptr, packet->m_nInfoField2);

	// (2.f) 写入扩展的时间戳,4字节
	if (t >= 0xffffff) // 用于编码32位整数值
		hptr = AMF_EncodeInt32(hptr, hend, t);

	nSize = packet->m_nBodySize;
	buffer = packet->m_body;
	nChunkSize = r->m_outChunkSize;	// 默认的chunk大小为128个字节

	RTMP_Log(RTMP_LOGDEBUG2, "%s: fd=%d, size=%d", __FUNCTION__, r->m_sb.sb_socket,
		nSize);
	/* send all chunks in one HTTP request */
	if (r->Link.protocol & RTMP_FEATURE_HTTP)
	{
		int chunks = (nSize + nChunkSize - 1) / nChunkSize;
		if (chunks > 1)
		{
			tlen = chunks * (cSize + 1) + nSize + hSize;
			tbuf = malloc(tlen);
			if (!tbuf)
				return FALSE;
			toff = tbuf;
		}
	}
	// 3. 发送消息
	// 前面已经将所需要的信息写入到了packet中,现在需要将packet分成多个chunk发送出去
	while (nSize + hSize) // nSize = bodySize, hSize = headerSize;
	{
		int wrote;

		if (nSize < nChunkSize) // 当前剩余的size,不需要分成多个chunk
			nChunkSize = nSize;

		RTMP_LogHexString(RTMP_LOGDEBUG2, (uint8_t*)header, hSize);
		RTMP_LogHexString(RTMP_LOGDEBUG2, (uint8_t*)buffer, nChunkSize);
		if (tbuf)
		{
			memcpy(toff, header, nChunkSize + hSize);
			toff += nChunkSize + hSize;
		}
		else
		{
			// 发出信息,大小为nChunkSize + hSize 
			// nChunkSize默认为128字节
			wrote = WriteN(r, header, nChunkSize + hSize);
			if (!wrote)
				return FALSE;
		}
		// 更新size
		nSize -= nChunkSize;
		buffer += nChunkSize;
		hSize = 0;	// 第一次就会把header中的信息全部发完

		if (nSize > 0) // 还有消息没有发送完,需要将剩余的信息打包成为chunk,用于后续的发送
		{
			header = buffer - 1;
			hSize = 1;
			// 重新处理头部信息
			if (cSize)
			{
				header -= cSize;
				hSize += cSize;
			}
			if (t >= 0xffffff)
			{
				header -= 4;
				hSize += 4;
			}
			// 取出c中的前2位,即fmt信息
			*header = (0xc0 | c); // 0xc0 : 1100 0000
			if (cSize)
			{
				int tmp = packet->m_nChannel - 64;
				header[1] = tmp & 0xff;
				if (cSize == 2)
					header[2] = tmp >> 8;
			}
			if (t >= 0xffffff)
			{
				char* extendedTimestamp = header + 1 + cSize;
				AMF_EncodeInt32(extendedTimestamp, extendedTimestamp + 4, t);
			}
		}
	}
	if (tbuf)
	{
		int wrote = WriteN(r, tbuf, toff - tbuf);
		free(tbuf);
		tbuf = NULL;
		if (!wrote)
			return FALSE;
	}

	/* we invoked a remote method */
	if (packet->m_packetType == RTMP_PACKET_TYPE_INVOKE)
	{
		AVal method;
		char* ptr;
		ptr = packet->m_body + 1;
		AMF_DecodeString(ptr, &method);
		RTMP_Log(RTMP_LOGDEBUG, "Invoking %s", method.av_val);
		/* keep it in call queue till result arrives */
		if (queue) {
			int txn;
			ptr += 3 + method.av_len;
			txn = (int)AMF_DecodeNumber(ptr);
			AV_queue(&r->m_methodCalls, &r->m_numCalls, &method, txn);
		}
	}
	// 存储前面发送的packet
	if (!r->m_vecChannelsOut[packet->m_nChannel])
		r->m_vecChannelsOut[packet->m_nChannel] = malloc(sizeof(RTMPPacket));
	memcpy(r->m_vecChannelsOut[packet->m_nChannel], packet, sizeof(RTMPPacket));
	return TRUE;
}

2.小结

记录了RTMPDump中如何以client的视角与对端server建立连接的过程,分为几个步骤:

(1)建立socket连接

(2)建立RTMP连接

(a)握手

(b)RTMP的网络连接(会发送connect命令)

基于此,RTMPDump的client就与server进行了正式的连接,后续可以进行互相传输信息了

相关推荐
至暗时刻darkest6 分钟前
STM32 单片机 练习项目 LED灯闪烁&LED流水灯&蜂鸣器 未完待续
c++·单片机
飞飞是甜咖啡16 分钟前
【Orca】Orca - Graphlet 和 Orbit 计数算法
c语言·c++·人工智能·python
SCBAiotAigc32 分钟前
VSCode 在Windows下开发时使用Cmake Tools时输出Log乱码以及CPP文件乱码的终极解决方案
c++·vscode·cmake·cmake tools·编码问题
一只码代码的章鱼34 分钟前
计算机网络 笔记 数据链路层 1
网络·笔记·计算机网络
salsm38 分钟前
使用 C++ 实现神经网络:从基础到高级优化
开发语言·c++·神经网络
Themberfue1 小时前
HTTP/HTTPS ③-HTTP状态码
网络·网络协议·计算机网络·http
冷眼看人间恩怨1 小时前
【Qt笔记】QTextEdit和QPlainTextEdit 控件详解
c++·笔记·qt
是阿建吖!1 小时前
【Linux】线程池
android·linux·c语言·c++
Dongliner~1 小时前
【C++多线程编程:六种锁】
开发语言·c++
白驹过隙^^2 小时前
TR-069协议学习--Soap报文、事件、RPC方法
网络·网络协议·学习·rpc