python 已知x+y=8 求x*y*(x-y)的最大值

先用导数求解

已知x+y=8

求xy(x-y)的最大值

令y=8-x

则 f(x)=x⋅(8−x)⋅(x−(8−x))=x⋅(8−x)⋅(2x−8)

导数方程为 f(x)'=-3x^2 + 24x - 32

求方程 − 3 x 2 + 24 x − 32 = 0 -3x^2 + 24x - 32 = 0 −3x2+24x−32=0 的根。

首先,我们可以尝试对方程进行因式分解。观察方程,我们可以发现它可以写成:

− 3 ( x 2 − 8 x + 32 3 ) = 0 -3(x^2 - 8x + \frac{32}{3}) = 0 −3(x2−8x+332)=0

但是,直接因式分解可能不太容易。因此,我们可以使用求根公式来找到方程的解。

对于一般形式的一元二次方程 a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0,其解为:

x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2a−b±b2−4ac

将我们的方程的系数代入求根公式,我们得到:

x = − 24 ± 2 4 2 − 4 × ( − 3 ) × ( − 32 ) 2 × ( − 3 ) x = \frac{-24 \pm \sqrt{24^2 - 4 \times (-3) \times (-32)}}{2 \times (-3)} x=2×(−3)−24±242−4×(−3)×(−32)

x = − 24 ± 576 − 384 − 6 x = \frac{-24 \pm \sqrt{576 - 384}}{-6} x=−6−24±576−384

x = − 24 ± 192 − 6 x = \frac{-24 \pm \sqrt{192}}{-6} x=−6−24±192

x = − 24 ± 8 3 − 6 x = \frac{-24 \pm 8\sqrt{3}}{-6} x=−6−24±83

这给出了两个解:

x 1 = − 24 + 8 3 − 6 = 4 − 4 3 3 x_1 = \frac{-24 + 8\sqrt{3}}{-6} = 4 - \frac{4\sqrt{3}}{3} x1=−6−24+83 =4−343

x 2 = − 24 − 8 3 − 6 = 4 + 4 3 3 x_2 = \frac{-24 - 8\sqrt{3}}{-6} = 4 + \frac{4\sqrt{3}}{3} x2=−6−24−83 =4+343

所以,方程 − 3 x 2 + 24 x − 32 = 0 -3x^2 + 24x - 32 = 0 −3x2+24x−32=0 的根是 x 1 = 4 − 4 3 3 x_1 = 4 - \frac{4\sqrt{3}}{3} x1=4−343 和 x 2 = 4 + 4 3 3 x_2 = 4 + \frac{4\sqrt{3}}{3} x2=4+343 。

python 复制代码
from scipy.optimize import minimize  
  
# 定义原函数  
def func(x):  
    return x * (8 - x) * (2 * x - 8)  
  
# 定义相反数函数  
def neg_func(x):  
    return -func(x)  
  
# 求相反数函数的极小值,即原函数的极大值  
res = minimize(neg_func, x0=4)  # x0是初始猜测值  
  
# 输出结果  
print("极大值点 x =", res.x)  
print("极大值 y =", -res.fun)  # 注意取相反数得到原函数的值
相关推荐
XiaoLeisj26 分钟前
【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题
java·开发语言·java-ee
API快乐传递者30 分钟前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
励志成为嵌入式工程师1 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉2 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer2 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
Peter_chq2 小时前
【操作系统】基于环形队列的生产消费模型
linux·c语言·开发语言·c++·后端
阡之尘埃2 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
记录成长java3 小时前
ServletContext,Cookie,HttpSession的使用
java·开发语言·servlet
前端青山3 小时前
Node.js-增强 API 安全性和性能优化
开发语言·前端·javascript·性能优化·前端框架·node.js
睡觉谁叫~~~3 小时前
一文解秘Rust如何与Java互操作
java·开发语言·后端·rust