算法-IMM

trajectory-prediction程序的imm.cc中的以下代码的对应的算法原理在后面

cpp 复制代码
void IMM_UKF::InputInteract() {

    if (std::isnan(model_pro_(0)) || std::isnan(model_pro_(1)) || std::isnan(model_pro_(2)))
        std::abort();
    if (model_pro_.sum() != 0)
        model_pro_ /= model_pro_.sum();

    c_.fill(0.0);
    // 遍历所有模型对,根据交互概率interact_pro_(i, j)和模型概率model_pro_(i),计算每个模型j的混合概率c_(j)。
    // 这个混合概率表示在考虑模型间交互后,模型j被选中的概率。
    for (int j = 0; j < model_size; ++j) {
        model_X_[j] = imm_ukf_[j].Get_state();
        model_P_[j] = imm_ukf_[j].Get_covariance();
        for (int i = 0; i < model_size; ++i) {
            c_(j) += interact_pro_(i, j) * model_pro_(i);
        }
    }

    for (int j = 0; j < model_size; ++j) {
        X_hat_[j].fill(0.);
        P_hat_[j].fill(0.);
        for (int i = 0; i < model_size; ++i) {
            double u = ((interact_pro_(i, j) * model_pro_(i)) / c_(j));
            X_hat_[j] += u * model_X_[i];
        }
        for (int i = 0; i < model_size; ++i) {
            double u = (interact_pro_(i, j) * model_pro_(i)) / c_(j);
            P_hat_[j] += (u * (model_P_[i] + (model_X_[i] - X_hat_[j]) * (model_X_[i] - X_hat_[j]).transpose()));
        }
    }
}
相关推荐
xier_ran7 分钟前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
地平线开发者16 分钟前
不同传感器前中后融合方案简介
算法·自动驾驶
地平线开发者27 分钟前
征程 6X 常见 kernel panic 问题
算法·自动驾驶
com_4sapi2 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
前端小L2 小时前
二分查找专题(九):“降维”的魔术!将二维矩阵“拉平”为一维
数据结构·算法
Jasmine_llq2 小时前
《P7516 [省选联考 2021 A/B 卷] 图函数》
算法·弗洛伊德算法·floydwarshall算法·后缀和计算
kaikaile19952 小时前
三维CT图像重建算法
算法
她说人狗殊途2 小时前
时间复杂度(按增长速度从低到高排序)包括以下几类,用于描述算法执行时间随输入规模 n 增长的变化趋势:
数据结构·算法·排序算法
计科土狗2 小时前
算法基础入门第一章
c++·算法
与己斗其乐无穷2 小时前
算法(二)滑动窗口
算法