算法-IMM

trajectory-prediction程序的imm.cc中的以下代码的对应的算法原理在后面

cpp 复制代码
void IMM_UKF::InputInteract() {

    if (std::isnan(model_pro_(0)) || std::isnan(model_pro_(1)) || std::isnan(model_pro_(2)))
        std::abort();
    if (model_pro_.sum() != 0)
        model_pro_ /= model_pro_.sum();

    c_.fill(0.0);
    // 遍历所有模型对,根据交互概率interact_pro_(i, j)和模型概率model_pro_(i),计算每个模型j的混合概率c_(j)。
    // 这个混合概率表示在考虑模型间交互后,模型j被选中的概率。
    for (int j = 0; j < model_size; ++j) {
        model_X_[j] = imm_ukf_[j].Get_state();
        model_P_[j] = imm_ukf_[j].Get_covariance();
        for (int i = 0; i < model_size; ++i) {
            c_(j) += interact_pro_(i, j) * model_pro_(i);
        }
    }

    for (int j = 0; j < model_size; ++j) {
        X_hat_[j].fill(0.);
        P_hat_[j].fill(0.);
        for (int i = 0; i < model_size; ++i) {
            double u = ((interact_pro_(i, j) * model_pro_(i)) / c_(j));
            X_hat_[j] += u * model_X_[i];
        }
        for (int i = 0; i < model_size; ++i) {
            double u = (interact_pro_(i, j) * model_pro_(i)) / c_(j);
            P_hat_[j] += (u * (model_P_[i] + (model_X_[i] - X_hat_[j]) * (model_X_[i] - X_hat_[j]).transpose()));
        }
    }
}
相关推荐
Savior`L2 小时前
二分算法及常见用法
数据结构·c++·算法
mmz12073 小时前
前缀和问题(c++)
c++·算法·图论
努力学算法的蒟蒻3 小时前
day27(12.7)——leetcode面试经典150
算法·leetcode·面试
甄心爱学习4 小时前
CSP认证 备考(python)
数据结构·python·算法·动态规划
kyle~5 小时前
排序---常用排序算法汇总
数据结构·算法·排序算法
AndrewHZ5 小时前
【遥感图像入门】DEM数据处理核心算法与Python实操指南
图像处理·python·算法·dem·高程数据·遥感图像·差值算法
CoderYanger5 小时前
动态规划算法-子序列问题(数组中不连续的一段):28.摆动序列
java·算法·leetcode·动态规划·1024程序员节
有时间要学习5 小时前
面试150——第二周
数据结构·算法·leetcode
liu****6 小时前
3.链表讲解
c语言·开发语言·数据结构·算法·链表