AI提效实例-借助AI高效生成Markdown格式的超链接

我在学习谷粒商城的过程中,每集都写一篇博客笔记,为了方便查找,把所有博客都汇总到一起谷粒商城笔记汇总,如下。

现在一共有142篇笔记。

之前每发表一篇就把地址记录下来,虽然麻烦,还可忍受。

后来有点懈怠,写了10篇、20篇才记录,这时就很头疼了,要把每一篇打开,然后copy标题和url,按markdown格式编写链接,还要修改序号,看起来简单,重复的操作非常消耗耐心,且没有价值。

后面我想到了一个办法,F12打开CSDN内容管理界面控制台,把接口返回的文章列表信息复制到通义千问或者Kimi,让AI给我生成链接,效率就高多了。

提示词如下。

cpp 复制代码
从后往前遍历文件中的数组,提取每一项中的articleId和title,按照如下模板"""[{index},{title}](https://blog.csdn.net/epitomizelu/article/details/{articleId})""",index从109开始,每次加1。

结果前面不要加序号,也不要用双引号包裹。

AI生成的结果非常完美,就是我想要的结果。

痛点分析

假设我们要整理一系列技术文章的链接列表,通常的做法是打开每篇文章,复制标题和链接,然后手动按照Markdown格式编辑好每一条记录。这个过程看似简单,但当文章数量较多时,这项任务就变得非常繁琐。此外,手动操作还容易出现遗漏或格式不一致的问题。

解决方案

为了解决这个问题,我们可以利用AI工具来自动化这部分工作。在这里,我将展示如何使用通义千问来快速生成Markdown格式的文章链接列表。

使用步骤
  1. 准备数据:首先,我们需要准备好要整理的数据,这些数据可以是来自于数据库导出、API接口获取或其他方式收集的一系列文章信息。

  2. 构建指令:接下来,根据我们的需求构建指令。在这个例子中,我们需要让AI从后往前遍历数据,并按指定的Markdown格式输出链接列表。这里的关键在于指定模板格式,确保AI能够理解并正确地应用它。

  3. 调用AI工具:使用通义千问,发送指令并附带数据文件,等待AI处理并返回结果。

  4. 接收结果:AI会根据给定的指令处理数据,并返回按照Markdown格式组织好的链接列表。

实例演示

假设我们有一份包含多篇文章的数据文件,文件中每条记录包括articleIdtitle两个字段。我们的目标是从后往前遍历文件中的数组,提取每一项中的articleIdtitle,并按照以下Markdown格式输出:

markdown 复制代码
[index, title](https://blog.csdn.net/epitomizelu/article/details/articleId)

其中index从109开始递增,每次加1。

下面是具体的指令:

复制代码
从后往前遍历文件中的数组,提取每一项中的articleId和title,按照如下模板"""[{index},{title}](https://blog.csdn.net/epitomizelu/article/details/{articleId})""",index从109开始,每次加1。

结果前面不要加序号,也不要用双引号包裹。

通过调用通义千问并传递上述指令和数据文件,我们可以得到如下格式化的链接列表:

markdown 复制代码
[109,谷粒商城实战笔记-利用大模型工具将DSL转换为Elasticsearch High-Level Client Java代码](https://blog.csdn.net/epitomizelu/article/details/140906140)
[110,谷粒商城实战笔记-128-商城业务-商品上架-sku在es中存储模型分析-关键](https://blog.csdn.net/epitomizelu/article/details/140917007)
...
[127,谷粒商城实战笔记-152-缓存-缓存使用-整合Redis](https://blog.csdn.net/epitomizelu/article/details/141019308)
总结

通过使用通义千问这样的AI工具,我们可以极大地提高工作效率,减少重复劳动,确保文档格式的一致性和准确性。这种方式特别适合处理大量的数据整理工作,不仅节省了时间,还能避免人为错误,让我们的工作更加高效和专业。

相关推荐
Rabbit_QL3 小时前
【PyTorch】detach:从计算图中切断梯度的原理与实践
人工智能·pytorch·python
测试人社区-小明3 小时前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
阿达_优阅达3 小时前
Tableau 2025.3 发布!可视化扩展升级、Server 版 Agent、平台数据 API,让 AI 深度融入业务工作流
人工智能·ai·数据分析·数据可视化·仪表板·tableau·版本更新
春日见3 小时前
基于深度学习的机械臂抓取
人工智能
希艾席帝恩3 小时前
数字孪生如何重塑现代制造体系?
大数据·人工智能·数字孪生·数据可视化·数字化转型
浔川python社3 小时前
关于浔川 AI 翻译项目推进建议的公告
人工智能
武汉海翎光电3 小时前
从数据采集到智能决策:船舶传感器的技术跃迁之路
大数据·人工智能
Coding茶水间4 小时前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉