深度学习基础—动量梯度下降法

1.算法原理

动量梯度下降法就是在梯度下降法的基础上,使用指数加权移动平均值,来平均梯度,这种算法比梯度下降法更快。

如上图,损失函数的最小值是红点,椭圆是损失函数的图像,梯度下降法就像蓝线和紫线(学习率高,因此计算容易超出范围)一样,摆动着朝最小值移动。但是这种优化算法的计算步骤很多,并且靠近最小值,梯度比较小,此时算法速度减慢,也无法使用更高的学习率(否则就会出现紫色的情况)。

从另一角度讨论,我们希望算法的运行轨迹是x轴处更快点,y轴更慢点,不希望摆动太多(增加计算),因此这就启发我们寻找更加平滑的优化路径。于是指数加权移动平均值就排上用场,因为它可以平滑计算,同时也能反应趋势。

2.算法流程

在梯度下降法或Mini-batch 梯度下降法中添加指数加权移动平均值深度学习基础---指数加权移动平均值http://t.csdnimg.cn/ZY628代替原来的权重更新,得到的算法如下:

这个算法存在两个超参数:学习率a和参数b,参数b通常取值0.9。不加偏差修正的原因是b=0.9表示平均了10次的梯度,我们不需要准确估计网络初期的梯度,而10次迭代后就已经越过了这个时期,此时预估的梯度是比较准确的,因此不需要偏差修正。

结合开始的图可以发现,对于y轴方向,正负值抵消,梯度的估计值接近0,因此减小了摆动,而x轴方向微分始终朝向最小值方向,因此优化更加平缓的向最小值方向移动,因此减少了计算,加快了收敛速度。对于接近最小值的地方,该算法预估出来的梯度值更大,因此也加快了速度。

3.如何理解

如何理解算法:通常优化函数是一个碗状形状,最小值在碗底。优化路径像从碗边滚下的小球,小球的加速度就是梯度(dW、db),小球的速度就是动量项(VdW、Vdb)。梯度下降法更像离散的运动轨迹,因为小球是每计算出一个优化值,就向那个地方直接跳跃。而动量梯度下降法是连续的运动轨迹,指数加权移动平均值平滑了梯度,进而速度也更加平滑,小球有了连续运动的惯性,因此赋予了小球动量。这也是动量梯度下降法名字的由来。

注意:有些文献去掉了(1-b),这也不错,但是去掉(1-b)后往往会导致VdW和Vdb扩大,于是可能需要调整学习率a,从而控制权重更新不那么快。这更加繁琐,至于使用哪个公式,顺手就行。

相关推荐
深圳南柯电子13 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ13 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008818 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖24 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
qq_5290252942 分钟前
Torch.gather
python·深度学习·机器学习
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232922 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发