encoder和decoder结构

1. 编码器(Encoder):

  • 编码器处理输入数据(例如,句子中的词序列),并将其压缩成一个固定大小的上下文向量或一系列上下文向量。
  • 这一部分通常由多层递归神经网络(RNNs)、长短期记忆网络(LSTMs)、门控循环单元(GRUs)或最近的Transformer网络组成。
  • 编码器逐步读取输入序列,并在每一步更新其隐藏状态。最终的隐藏状态或一系列隐藏状态就包含了输入序列的信息。

2. 上下文向量(Context Vector):

  • 上下文向量是输入序列的压缩表示。在传统的编码器-解码器模型中,这是一个单一的向量,但在更先进的模型如基于注意力机制的模型中,它可以是一系列向量。
  • 该向量作为输入数据的摘要,解码器将使用它来生成输出。

3. 解码器(Decoder):

  • 解码器接收编码器生成的上下文向量(或多个向量),逐步生成输出序列。
  • 与编码器类似,解码器可以由RNNs、LSTMs、GRUs或Transformers组成。
  • 解码器在生成输出序列的每一个标记时,会参考上下文向量和已生成的标记。
  • 在机器翻译等任务中,解码器一次预测一个词,并将其输出反馈给自身,以预测下一个词。

注意力机制(Attention Mechanism)(可选但常用):

  • 在许多现代的编码器-解码器架构中,使用注意力机制使解码器在生成每个输出标记时可以关注输入序列的不同部分。
  • 通过注意力机制,解码器可以访问编码器生成的整个隐藏状态序列,并在每个解码步骤中对它们进行不同的加权。
相关推荐
Hcoco_me10 分钟前
深度学习目标关联:常见深度学习匹配方法全面详解
人工智能·深度学习·分类·数据挖掘·自动驾驶
Axis tech1 小时前
Xsens动作捕捉系统采集用于人形机器人AI大数据训练的精确运动数据
人工智能·深度学习·机器人
无心水1 小时前
2025,一路有你!
java·人工智能·分布式·后端·深度学习·架构·2025博客之星
JinchuanMaster2 小时前
Ubuntu20.04安装50系显卡驱动[不黑屏版本]
linux·人工智能·深度学习·ubuntu·机器学习·机器人·gpu算力
纪伊路上盛名在3 小时前
本地部署ColabFold, 实现蛋白质结构预测全自由
深度学习·神经网络·alphafold·计算生物学·蛋白质·结构预测·蛋白质折叠
硅谷秋水3 小时前
一个务实的VLA基础模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
骇城迷影4 小时前
从零复现GPT-2 124M
人工智能·pytorch·python·gpt·深度学习
Hcoco_me4 小时前
深挖 TBD 核心进阶点:深度学习匹配(目标关联的“智能指纹”)
人工智能·深度学习·目标检测·计算机视觉·目标跟踪
Suryxin.4 小时前
从0开始复现nano-vllm「 utils/contex.py」
深度学习·ai·vllm
ccLianLian5 小时前
计算机基础·cs336·推理和训练
人工智能·深度学习