encoder和decoder结构

1. 编码器(Encoder):

  • 编码器处理输入数据(例如,句子中的词序列),并将其压缩成一个固定大小的上下文向量或一系列上下文向量。
  • 这一部分通常由多层递归神经网络(RNNs)、长短期记忆网络(LSTMs)、门控循环单元(GRUs)或最近的Transformer网络组成。
  • 编码器逐步读取输入序列,并在每一步更新其隐藏状态。最终的隐藏状态或一系列隐藏状态就包含了输入序列的信息。

2. 上下文向量(Context Vector):

  • 上下文向量是输入序列的压缩表示。在传统的编码器-解码器模型中,这是一个单一的向量,但在更先进的模型如基于注意力机制的模型中,它可以是一系列向量。
  • 该向量作为输入数据的摘要,解码器将使用它来生成输出。

3. 解码器(Decoder):

  • 解码器接收编码器生成的上下文向量(或多个向量),逐步生成输出序列。
  • 与编码器类似,解码器可以由RNNs、LSTMs、GRUs或Transformers组成。
  • 解码器在生成输出序列的每一个标记时,会参考上下文向量和已生成的标记。
  • 在机器翻译等任务中,解码器一次预测一个词,并将其输出反馈给自身,以预测下一个词。

注意力机制(Attention Mechanism)(可选但常用):

  • 在许多现代的编码器-解码器架构中,使用注意力机制使解码器在生成每个输出标记时可以关注输入序列的不同部分。
  • 通过注意力机制,解码器可以访问编码器生成的整个隐藏状态序列,并在每个解码步骤中对它们进行不同的加权。
相关推荐
Python图像识别1 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster1 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
深蓝电商API2 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
tt5555555555552 小时前
Transformer原理与过程详解
网络·深度学习·transformer
qzhqbb2 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
Victory_orsh3 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
java1234_小锋3 小时前
PyTorch2 Python深度学习 - 模型保存与加载
开发语言·python·深度学习·pytorch2
Python图像识别3 小时前
74_基于深度学习的垃圾桶垃圾溢出检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
CoovallyAIHub3 小时前
突破360°跟踪极限!OmniTrack++:全景MOT新范式,HOTA指标狂飙43%
深度学习·算法·计算机视觉
lybugproducer3 小时前
深度学习专题:模型训练的数据并行(二)
人工智能·深度学习·神经网络