encoder和decoder结构

1. 编码器(Encoder):

  • 编码器处理输入数据(例如,句子中的词序列),并将其压缩成一个固定大小的上下文向量或一系列上下文向量。
  • 这一部分通常由多层递归神经网络(RNNs)、长短期记忆网络(LSTMs)、门控循环单元(GRUs)或最近的Transformer网络组成。
  • 编码器逐步读取输入序列,并在每一步更新其隐藏状态。最终的隐藏状态或一系列隐藏状态就包含了输入序列的信息。

2. 上下文向量(Context Vector):

  • 上下文向量是输入序列的压缩表示。在传统的编码器-解码器模型中,这是一个单一的向量,但在更先进的模型如基于注意力机制的模型中,它可以是一系列向量。
  • 该向量作为输入数据的摘要,解码器将使用它来生成输出。

3. 解码器(Decoder):

  • 解码器接收编码器生成的上下文向量(或多个向量),逐步生成输出序列。
  • 与编码器类似,解码器可以由RNNs、LSTMs、GRUs或Transformers组成。
  • 解码器在生成输出序列的每一个标记时,会参考上下文向量和已生成的标记。
  • 在机器翻译等任务中,解码器一次预测一个词,并将其输出反馈给自身,以预测下一个词。

注意力机制(Attention Mechanism)(可选但常用):

  • 在许多现代的编码器-解码器架构中,使用注意力机制使解码器在生成每个输出标记时可以关注输入序列的不同部分。
  • 通过注意力机制,解码器可以访问编码器生成的整个隐藏状态序列,并在每个解码步骤中对它们进行不同的加权。
相关推荐
青瓷程序设计1 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z1 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
阿龙AI日记2 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran8 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20068 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
【建模先锋】9 小时前
论文复现!基于SAM-BiGRU网络的锂电池RUL预测
深度学习·论文复现·锂电池寿命预测·锂电池数据集·寿命预测
清云逸仙11 小时前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
松岛雾奈.23012 小时前
深度学习--TensorFlow框架使用
深度学习·tensorflow·neo4j
中杯可乐多加冰13 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
大佬,救命!!!13 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置