Elasticsearch 实现距离查询、排序和筛选


Elasticsearch 实现距离查询、排序和筛选

前言

在现代应用中,位置相关的查询需求越来越普遍。无论是查找附近的餐厅、计算两个地点之间的距离,还是根据用户位置进行排序和筛选,Elasticsearch 都提供了强大的地理位置查询功能。本文将介绍如何在 Elasticsearch 中实现基于距离的查询、排序和筛选。

1. 准备工作

1.1 安装和配置 Elasticsearch

首先,需要确保已经安装并配置好了 Elasticsearch。可以参考官方文档进行安装配置。安装完成后,我们可以通过 Kibana 或者直接使用 REST API 来进行查询操作。

1.2 创建索引并映射地理位置字段

在 Elasticsearch 中,我们需要为地理位置数据定义一个 geo_point 类型的字段。假设我们有一个 locations 索引,存储了各个地点的经纬度信息:

json 复制代码
PUT /locations
{
  "mappings": {
    "properties": {
      "location": {
        "type": "geo_point"
      }
    }
  }
}

2. 实现距离查询

2.1 查询指定距离范围内的地点

我们可以使用 geo_distance 查询来查找位于特定距离范围内的地点。比如,查找距离给定经纬度 5 公里范围内的所有地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_distance": {
          "distance": "5km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  }
}

2.2 根据距离进行排序

在有多个匹配结果时,我们通常希望根据与目标位置的距离进行排序。可以通过 geo_distance 函数进行排序:

json 复制代码
GET /locations/_search
{
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km",
        "mode": "min",
        "distance_type": "arc"
      }
    }
  ],
  "query": {
    "match_all": {}
  }
}

3. 结合筛选条件的距离查询

在实际应用中,距离查询通常与其他筛选条件结合使用。以下示例展示了如何根据用户评分筛选出特定范围内的地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "rating": {
              "gte": 4
            }
          }
        }
      ],
      "filter": {
        "geo_distance": {
          "distance": "10km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}
相关推荐
货拉拉技术25 分钟前
货拉拉离线大数据跨云迁移-综述篇
大数据·云原生
会飞的小蛮猪38 分钟前
Jenkins运维之路(Slave容器节点)
运维·ci/cd·jenkins
Lx3522 小时前
Hadoop与实时计算集成:Lambda架构实践经验
大数据·hadoop
武子康5 小时前
大数据-101 Spark Streaming 有状态转换详解:窗口操作与状态跟踪实战 附多案例代码
大数据·后端·spark
expect7g6 小时前
COW、MOR、MOW
大数据·数据库·后端
武子康1 天前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术1 天前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
云偶1 天前
从零搭建 Jenkins Android 自动发包体系
jenkins
代码匠心1 天前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3521 天前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop