Elasticsearch 实现距离查询、排序和筛选


Elasticsearch 实现距离查询、排序和筛选

前言

在现代应用中,位置相关的查询需求越来越普遍。无论是查找附近的餐厅、计算两个地点之间的距离,还是根据用户位置进行排序和筛选,Elasticsearch 都提供了强大的地理位置查询功能。本文将介绍如何在 Elasticsearch 中实现基于距离的查询、排序和筛选。

1. 准备工作

1.1 安装和配置 Elasticsearch

首先,需要确保已经安装并配置好了 Elasticsearch。可以参考官方文档进行安装配置。安装完成后,我们可以通过 Kibana 或者直接使用 REST API 来进行查询操作。

1.2 创建索引并映射地理位置字段

在 Elasticsearch 中,我们需要为地理位置数据定义一个 geo_point 类型的字段。假设我们有一个 locations 索引,存储了各个地点的经纬度信息:

json 复制代码
PUT /locations
{
  "mappings": {
    "properties": {
      "location": {
        "type": "geo_point"
      }
    }
  }
}

2. 实现距离查询

2.1 查询指定距离范围内的地点

我们可以使用 geo_distance 查询来查找位于特定距离范围内的地点。比如,查找距离给定经纬度 5 公里范围内的所有地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_distance": {
          "distance": "5km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  }
}

2.2 根据距离进行排序

在有多个匹配结果时,我们通常希望根据与目标位置的距离进行排序。可以通过 geo_distance 函数进行排序:

json 复制代码
GET /locations/_search
{
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km",
        "mode": "min",
        "distance_type": "arc"
      }
    }
  ],
  "query": {
    "match_all": {}
  }
}

3. 结合筛选条件的距离查询

在实际应用中,距离查询通常与其他筛选条件结合使用。以下示例展示了如何根据用户评分筛选出特定范围内的地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "rating": {
              "gte": 4
            }
          }
        }
      ],
      "filter": {
        "geo_distance": {
          "distance": "10km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}
相关推荐
小高学习java44 分钟前
Canal、Elasticsearch、RabbitMq构建高可用、高性能的异构数据同步方案(亲测可用!!!!)
大数据·elasticsearch·rabbitmq·java-rabbitmq
_OP_CHEN1 小时前
算法基础篇:(十二)基础算法之倍增思想:从快速幂到大数据运算优化
大数据·c++·算法·acm·算法竞赛·倍增思想
武子康1 小时前
大数据-159 Apache Kylin Cube 实战:Hive 装载与预计算加速(含 Cuboid/实时 OLAP,Kylin 4.x)
大数据·后端·apache kylin
lisw052 小时前
边缘计算与云计算!
大数据·人工智能·机器学习·云计算·边缘计算
森语林溪2 小时前
数据“洪灾”变“水利”——古人“格物致知”的大数据实践
大数据
2501_941144032 小时前
边缘计算重塑数字世界:智能化时代的新型技术架构
elasticsearch
Hello.Reader2 小时前
Flink CDC 用 Db2 CDC 实时同步数据到 Elasticsearch
大数据·elasticsearch·flink
老蒋新思维3 小时前
创客匠人 2025 高峰论谈(11.22-25):AI 智能体重构创始人 IP 打造与知识变现的管理逻辑
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
TDengine (老段)5 小时前
TDengine 字符串函数 TO_BASE64 用户手册
android·大数据·服务器·物联网·时序数据库·tdengine·涛思数据
啊吧怪不啊吧5 小时前
算法王冠上的明珠——动态规划之斐波那契数列问题
大数据·算法·动态规划