Elasticsearch 实现距离查询、排序和筛选


Elasticsearch 实现距离查询、排序和筛选

前言

在现代应用中,位置相关的查询需求越来越普遍。无论是查找附近的餐厅、计算两个地点之间的距离,还是根据用户位置进行排序和筛选,Elasticsearch 都提供了强大的地理位置查询功能。本文将介绍如何在 Elasticsearch 中实现基于距离的查询、排序和筛选。

1. 准备工作

1.1 安装和配置 Elasticsearch

首先,需要确保已经安装并配置好了 Elasticsearch。可以参考官方文档进行安装配置。安装完成后,我们可以通过 Kibana 或者直接使用 REST API 来进行查询操作。

1.2 创建索引并映射地理位置字段

在 Elasticsearch 中,我们需要为地理位置数据定义一个 geo_point 类型的字段。假设我们有一个 locations 索引,存储了各个地点的经纬度信息:

json 复制代码
PUT /locations
{
  "mappings": {
    "properties": {
      "location": {
        "type": "geo_point"
      }
    }
  }
}

2. 实现距离查询

2.1 查询指定距离范围内的地点

我们可以使用 geo_distance 查询来查找位于特定距离范围内的地点。比如,查找距离给定经纬度 5 公里范围内的所有地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_distance": {
          "distance": "5km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  }
}

2.2 根据距离进行排序

在有多个匹配结果时,我们通常希望根据与目标位置的距离进行排序。可以通过 geo_distance 函数进行排序:

json 复制代码
GET /locations/_search
{
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km",
        "mode": "min",
        "distance_type": "arc"
      }
    }
  ],
  "query": {
    "match_all": {}
  }
}

3. 结合筛选条件的距离查询

在实际应用中,距离查询通常与其他筛选条件结合使用。以下示例展示了如何根据用户评分筛选出特定范围内的地点:

json 复制代码
GET /locations/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "rating": {
              "gte": 4
            }
          }
        }
      ],
      "filter": {
        "geo_distance": {
          "distance": "10km",
          "location": {
            "lat": 40.7128,
            "lon": -74.0060
          }
        }
      }
    }
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 40.7128,
          "lon": -74.0060
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}
相关推荐
ratbag6720139 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐10 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社11 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
全栈工程师修炼指南11 小时前
告别手动构建!Jenkins 与 Gitlab 完美协作,根据参数自动化触发CI/CD流水线实践
运维·ci/cd·自动化·gitlab·jenkins
潘达斯奈基~11 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路12 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院13 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
孟意昶14 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
IT学长编程15 小时前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
AAA修煤气灶刘哥15 小时前
Kafka 入门不踩坑!从概念到搭环境,后端 er 看完就能用
大数据·后端·kafka