深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
瑞华丽PLM2 分钟前
国产PLM软件源头厂家的AI技术应用与智能化升级
人工智能·plm·国产plm·瑞华丽plm·瑞华丽
koo3647 分钟前
pytorch深度学习笔记19
pytorch·笔记·深度学习
xixixi7777711 分钟前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
玄同76513 分钟前
LangChain v1.0+ Prompt 模板完全指南:构建精准可控的大模型交互
人工智能·语言模型·自然语言处理·langchain·nlp·交互·知识图谱
Ryan老房18 分钟前
开源vs商业-数据标注工具的选择困境
人工智能·yolo·目标检测·计算机视觉·ai
取个鸣字真的难23 分钟前
Obsidian + CC:用AI 打造知识管理系统
人工智能·产品运营
困死,根本不会40 分钟前
OpenCV摄像头实时处理:基于 HSV 颜色空间的摄像头实时颜色筛选工具
人工智能·opencv·计算机视觉
Shirley~~1 小时前
Vue-skills的中文文档
前端·人工智能
华大哥1 小时前
AI大模型基于LangChain 进行RAG与Agent智能体开发
人工智能·langchain
Sagittarius_A*1 小时前
角点检测:Harris 与 Shi-Tomasi原理拆解【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉