深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
一个会的不多的人3 分钟前
人工智能基础篇:概念性名词浅谈(第二十六讲)
人工智能·制造·量子计算·数字化转型
liu****3 分钟前
能源之星案例
人工智能·python·算法·机器学习·能源
摆烂咸鱼~8 分钟前
机器学习(13-2)
人工智能·机器学习
人工智能AI技术8 分钟前
从零复现马斯克开源X推荐算法
人工智能
Mixtral18 分钟前
4款录音转文字工具深度评测:钉钉闪记、Otter、随身鹿、讯飞听见...AI后处理能力谁更强?
人工智能
智驱力人工智能22 分钟前
守护矿山动脉 矿山皮带跑偏AI识别系统的工程化实践与价值 皮带偏离检测 皮带状态异常检测 多模态皮带偏离监测系统
大数据·人工智能·opencv·算法·安全·yolo·边缘计算
大模型真好玩22 分钟前
大模型训练全流程实战指南基础篇(二)——大模型文件结构解读与原理解析
人工智能·pytorch·langchain
周博洋K24 分钟前
Deepseek的新论文Engram
人工智能
e***985726 分钟前
2024技术趋势:AI领跑,云端边缘共舞
人工智能
智驱力人工智能31 分钟前
构筑安全红线 发电站旋转设备停机合规监测的视觉分析技术与应用 旋转设备停机检测 旋转设备异常检测 设备停机AI行为建模
人工智能·opencv·算法·安全·目标检测·计算机视觉·边缘计算