深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
AI technophile16 分钟前
OpenCV计算机视觉实战(31)——人脸识别详解
人工智能·opencv·计算机视觉
九河云19 分钟前
汽车轻量化部件智造:碳纤维成型 AI 调控与强度性能数字孪生验证实践
人工智能·汽车·数字化转型
3DVisionary21 分钟前
DIC技术如何重新定义汽车板料成形测试
人工智能·汽车·材料力学性能·dic技术·汽车板料·成形极限图·非接触式测量
5***o50023 分钟前
深度学习代码库
人工智能·深度学习
2501_9416649624 分钟前
AI在创意产业的应用:从艺术到娱乐的数字变革
人工智能
没有梦想的咸鱼185-1037-166335 分钟前
最新“科研创新与智能化转型“暨AI 智能体(Agent)开发、大语言模型(LLM)本地化部署与RAG/微调优化技术
人工智能·语言模型·自然语言处理·chatgpt·数据分析
沛沛老爹40 分钟前
Text2SQL:让自助式数据报表开发从“技术门槛”走向“人人可用”
人工智能·text2sql·rag +·ai入门知识
Predestination王瀞潞1 小时前
Cuda的安装
linux·人工智能·深度学习
二川bro1 小时前
2025深度学习框架对决:TensorFlow与PyPyTorch深度测评
人工智能·深度学习·tensorflow
大雷神1 小时前
MateChat+ DevUI 电商后台管理系统中集成 AI 聊天助手功能
人工智能·ui