深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
玖日大大3 分钟前
AI 模型全景解析:从基础原理到产业落地(2025 最新版)
人工智能
java1234_小锋4 分钟前
Transformer 大语言模型(LLM)基石 - Transformer简介
深度学习·语言模型·llm·transformer·大语言模型
腾飞开源4 分钟前
27_Spring AI 干货笔记之 OpenAI SDK 聊天功能(官方支持)
人工智能·多模态·工具调用·spring ai·openai sdk·github models·示例控制器
有来有去95274 分钟前
[模型量化]-大模型量化效果评价-Qwen2.5-72B
人工智能·语言模型·gpu算力
斯外戈的小白8 分钟前
【NLP】one-hot到word2vec发展路线
人工智能·自然语言处理·word2vec
zhurui_xiaozhuzaizai8 分钟前
RL 训练中的“训练-推理不匹配”难题:根源分析于解决办法(重要性采样IS 、 切回 FP16精度)
人工智能
围炉聊科技12 分钟前
LongCat-Image:美团的轻量化图像生成与编辑新标杆
人工智能
金叶科技智慧农业13 分钟前
科技如何守护每一株幼苗?苗情生态监测系统带来田间新视角
大数据·人工智能
一招定胜负14 分钟前
机器学习预备知识:numpy、pandas、matplotlib库
人工智能·机器学习·numpy