深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
晨航2 分钟前
AI Agent拐点已至,2B+2C星辰大海——行业深度报告
人工智能·ai·aigc
果冻人工智能8 分钟前
只让 AI 写点坏代码,它却学坏了整颗心
人工智能
zy_destiny18 分钟前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
进取星辰18 分钟前
PyTorch 深度学习实战(32):多模态学习与CLIP模型
pytorch·深度学习·学习
姚瑞南20 分钟前
从模糊感知到量化评估:构建一个Prompt打分工具
人工智能·自然语言处理·chatgpt·prompt·aigc
机器之心25 分钟前
ICLR 2025 Spotlight | 参数高效微调新范式!上海交大联合上海AI Lab推出参数冗余微调算法
人工智能
机器之心34 分钟前
OpenAI的AI复现论文新基准,Claude拿了第一名
人工智能
骑猪兜风23340 分钟前
没有人知道“他妈的” 智能体到底是什么
人工智能·openai·ai编程
www_pp_42 分钟前
# 实时人脸识别系统:基于 OpenCV 和 Python 的实现
人工智能·python·opencv
果冻人工智能42 分钟前
MCP:让 AI 应用更聪明,只需几分钟
人工智能