深度学习中常见的激活函数

1. Sigmoid函数

  • 范围:输出值在0到1之间。
  • 导数
  • 优点:简单直观,适用于二分类问题的输出层。
  • 缺点:在输入值较大或较小时,梯度会变得非常小(梯度消失),这会导致深层网络训练困难。同时,Sigmoid函数的输出不是以0为中心的,这可能会导致梯度下降过程中的不稳定。

应用场景:常用于二分类问题的输出层,早期的全连接层中也会使用。

2. Tanh(双曲正切函数)

  • 范围:输出值在-1到1之间。
  • 导数
  • 优点:相比Sigmoid,tanh函数的输出以0为中心,这有助于梯度的传播。对于输入值较小或较大的情况,梯度的消失问题相对较轻。
  • 缺点:当输入值非常大或非常小时,tanh函数的梯度仍然会接近于零(梯度消失)。

应用场景:适用于中间层的激活函数,尤其是在需要负值和正值的情况中。

3. ReLU()激活函数

  • 范围:输出值在0到正无穷之间。
  • 导数
  • 优点:计算简单,梯度计算效率高,减少了梯度消失的问题,有助于加速网络的收敛。
  • 缺点:可能导致"死亡神经元"问题,即大量神经元输出恒为0,无法进行有效的训练。

应用场景:广泛应用于隐藏层的激活函数,是现代深度学习模型中的默认选择。

相关推荐
EkihzniY6 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通6 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾7 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19957 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1237 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget7 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪8 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus8 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠8 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner8 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘