【分布式】简述CAP理论

​ 计算机专家 埃里克·布鲁尔(Eric Brewer)于 2000 年在 ACM 分布式计算机原理专题讨论会(简称:PODC)中提出的分布式系统设计要考虑的三个核心要素:

  • 一致性(Consistency):同一时刻的同一请求的实例返回的结果相同,所有的数据要求具有强一致性(Strong Consistency)
  • 可用性(Availability):所有实例的读写请求在一定时间内可以得到正确的响应
  • 分区容错性(Partition tolerance):在网络异常(光缆断裂、设备故障、宕机)的情况下,系统仍能提供正常的服务

以上三个特点就是CAP原则(又称CAP定理),但是三个特性不可能同时满足,所以分布式系统设计要考虑的是在满足P(分区容错性)的前提下选择C(一致性)还是A(可用性),即:CP或AP。

CP原则

一致性 + 分区容错性原则

​ CP 原则属于强一致性原则,要求所有节点可以查询的数据随时都要保持一致(同步中的数据不可查询),即:若干个节点形成一个逻辑的共享区域,某一个节点更新的数据都会立即同步到其他数据节点之中,当数据同步完成后才能返回成功的结果,但是在实际的运行过程中网络故障在所难免,如果此时若干个服务节点之间无法通讯时就会出现错误,从而牺牲了以可用性原则(A),例如关系型数据库中的事务。

AP原则

可用性原则 + 分区容错性原则

​ AP原则属于弱一致性原则,在集群中只要有存活的节点那么所发送来的所有请求都可以得到正确的响应,在进行数据同步处理操作中即便某些节点没有成功的实现数据同步也返回成功,这样就牺牲一致性原则(C 原则)。

​ 使用场景:对于数据的同步一定会发出指令,但是最终的节点是否真的实现了同步,并不保证,可是却可以及时的得到数据更新成功的响应,可以应用在网络环境不是很好的场景中。

相关推荐
武子康2 分钟前
Java-195 RabbitMQ BlockingQueue 手搓“消息中间件”雏形:生产者-消费者模型到企业级 MQ 差在哪
java·分布式·架构·消息队列·rabbitmq·java-rabbitmq·mq
song50132 分钟前
鸿蒙 Flutter 复杂表单验证:自定义规则与联动逻辑
分布式·python·flutter·ci/cd·分类
音符犹如代码1 小时前
深入解析 Apollo:微服务时代的配置管理利器
java·分布式·后端·微服务·中间件·架构
招风的黑耳1 小时前
拆解基于SpringCloud社区团购项目:微服务划分与分布式事务实战
分布式·spring cloud·微服务
鸿蒙小白龙1 小时前
OpenHarmony LiteOS-A/M 版本迭代与演进对照
分布式·openharmony
狮恒2 小时前
OpenHarmony Flutter 分布式数据持久化:跨设备数据一致性与同步方案
分布式·flutter·wpf·openharmony
武子康2 小时前
Java-196 消息队列选型:RabbitMQ vs RocketMQ vs Kafka
java·分布式·kafka·rabbitmq·rocketmq·java-rocketmq·java-rabbitmq
song5012 小时前
鸿蒙 Flutter 离线缓存架构:多层缓存与数据一致性
人工智能·分布式·flutter·华为·开源鸿蒙
狮恒12 小时前
OpenHarmony Flutter 分布式数据管理:跨设备数据同步与一致性保障方案
分布式·flutter·wpf·openharmony
ZePingPingZe14 小时前
浅谈接口幂等性、MQ消费幂等性
分布式·java-rocketmq