【分布式】简述CAP理论

​ 计算机专家 埃里克·布鲁尔(Eric Brewer)于 2000 年在 ACM 分布式计算机原理专题讨论会(简称:PODC)中提出的分布式系统设计要考虑的三个核心要素:

  • 一致性(Consistency):同一时刻的同一请求的实例返回的结果相同,所有的数据要求具有强一致性(Strong Consistency)
  • 可用性(Availability):所有实例的读写请求在一定时间内可以得到正确的响应
  • 分区容错性(Partition tolerance):在网络异常(光缆断裂、设备故障、宕机)的情况下,系统仍能提供正常的服务

以上三个特点就是CAP原则(又称CAP定理),但是三个特性不可能同时满足,所以分布式系统设计要考虑的是在满足P(分区容错性)的前提下选择C(一致性)还是A(可用性),即:CP或AP。

CP原则

一致性 + 分区容错性原则

​ CP 原则属于强一致性原则,要求所有节点可以查询的数据随时都要保持一致(同步中的数据不可查询),即:若干个节点形成一个逻辑的共享区域,某一个节点更新的数据都会立即同步到其他数据节点之中,当数据同步完成后才能返回成功的结果,但是在实际的运行过程中网络故障在所难免,如果此时若干个服务节点之间无法通讯时就会出现错误,从而牺牲了以可用性原则(A),例如关系型数据库中的事务。

AP原则

可用性原则 + 分区容错性原则

​ AP原则属于弱一致性原则,在集群中只要有存活的节点那么所发送来的所有请求都可以得到正确的响应,在进行数据同步处理操作中即便某些节点没有成功的实现数据同步也返回成功,这样就牺牲一致性原则(C 原则)。

​ 使用场景:对于数据的同步一定会发出指令,但是最终的节点是否真的实现了同步,并不保证,可是却可以及时的得到数据更新成功的响应,可以应用在网络环境不是很好的场景中。

相关推荐
云和数据.ChenGuang3 小时前
OpenEuler系统下RabbitMQ安装与基础配置教程
服务器·分布式·rabbitmq·ruby·数据库运维工程师·运维教程
大千AI助手8 小时前
程序合约:形式化验证中的规范与实现框架
分布式·区块链·软件开发·形式化验证·大千ai助手·程序合约·contracts
云和数据.ChenGuang8 小时前
Deepseek适配场景:OpenEuler系统下RabbitMQ安装与基础配置教程
分布式·rabbitmq·ruby
时光追逐者8 小时前
一个基于 .NET 开源、功能强大的分布式微服务开发框架
分布式·微服务·开源·c#·.net·.net core
2501_940198699 小时前
【前瞻创想】Kurator·云原生实战派:打造下一代分布式云原生基础设施
分布式·云原生
太阳伞下的阿呆10 小时前
kafka高吞吐持久化方案(2)
分布式·kafka·高并发·重入锁
永亮同学11 小时前
【探索实战】告别繁琐,一栈统一:Kurator 从0到1落地分布式云原生应用管理平台!
分布式·云原生
十五年专注C++开发12 小时前
ZeroMQ: 一款高性能、异步、轻量级的消息传输库
网络·c++·分布式·zeroqm
张人玉13 小时前
LiveCharts WPF MVVM 图表开发笔记
大数据·分布式·wpf·livecharts
不惑_13 小时前
Kurator 分布式云原生平台从入门到实战教程
分布式·云原生