LLM 压缩之二: ShortGPT

0. 资源链接

1. 背景动机

现有的大语言模型 LLM 推理存在以下问题:

  • LLM 模型因为 scale law 极大的提高模型的预测能力,但是同样带来较大的推理延时;对于 LLM 应用部署带来较大的挑战。

  • 目前的大模型加速的方法主要分为量化和压缩两种,目前量化和压缩一般需要训练以恢复模型精度,尤其量化较低比特时。

2. 内容提要

  • 通过分析大模型存在的冗余性,发现在模型深度的维度存在大量的冗余;可以通过简单的去除冗余层来加速。

  • 本文提出了一个 BI score 的指标来表征层的重要性,基于 BI score,本文提出一个简单的深度剪枝方法。

3. 技术细节

  • BI score 计算公式:
  • 层冗余分析:

  • Layer 剪枝

    • 基于 BI score 排序,减去 BI score 小的层。

4. 实验分析

5. 一些思考

  • ShortGPT 给大模型剪枝提供了一个新视角,对后续的剪枝算法有较大启发。

  • ShortGPT 目前还比较简单,后续应该会有更多的工作出现,优化当前的方案。

相关推荐
ibrahim1 天前
Llama 3.2 900亿参数视觉多模态大模型本地部署及案例展示
ai·大模型·llama·提示词
算力魔方AIPC1 天前
Meta重磅发布Llama 3.3 70B:开源AI模型的新里程碑
人工智能·llama
三月七(爱看动漫的程序员)3 天前
LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS---正文
人工智能·gpt·学习·机器学习·语言模型·自然语言处理·llama
码狂☆3 天前
源码编译llama.cpp for android
android·人工智能·llama
Ambition_LAO3 天前
LLaMA-Factory QuickStart 流程详解
llm·llama
宇梵文书C3 天前
在CFFF云平台使用llama-factory部署及微调Qwen2.5-7B-Instruct
llm·llama·cfff
CSBLOG4 天前
Day27 - 大模型微调,LLaMA搭建
人工智能·深度学习·llama
python_知世5 天前
基于LLaMA-Factory微调Llama3
人工智能·深度学习·程序人生·自然语言处理·大语言模型·llama·大模型微调
handsomelky5 天前
ollama本地部署大语言模型记录
人工智能·语言模型·自然语言处理·chatgpt·llama·ollama·gemma
曦云沐5 天前
Llama3模型详解 - Meta最新开源大模型全面解析
开源·llama