LLM 压缩之二: ShortGPT

0. 资源链接

1. 背景动机

现有的大语言模型 LLM 推理存在以下问题:

  • LLM 模型因为 scale law 极大的提高模型的预测能力,但是同样带来较大的推理延时;对于 LLM 应用部署带来较大的挑战。

  • 目前的大模型加速的方法主要分为量化和压缩两种,目前量化和压缩一般需要训练以恢复模型精度,尤其量化较低比特时。

2. 内容提要

  • 通过分析大模型存在的冗余性,发现在模型深度的维度存在大量的冗余;可以通过简单的去除冗余层来加速。

  • 本文提出了一个 BI score 的指标来表征层的重要性,基于 BI score,本文提出一个简单的深度剪枝方法。

3. 技术细节

  • BI score 计算公式:
  • 层冗余分析:

  • Layer 剪枝

    • 基于 BI score 排序,减去 BI score 小的层。

4. 实验分析

5. 一些思考

  • ShortGPT 给大模型剪枝提供了一个新视角,对后续的剪枝算法有较大启发。

  • ShortGPT 目前还比较简单,后续应该会有更多的工作出现,优化当前的方案。

相关推荐
大模型教程20 小时前
小白学大模型:从零搭建LLaMA
程序员·llm·llama
Jina AI3 天前
让 llama.cpp 支持多模态向量模型
llama
wyw00003 天前
大模型微调之LLaMA-Factory实战
llama
2202_756749693 天前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
JoannaJuanCV3 天前
大模型训练框架:LLaMA-Factory框架
llama·大模型训练·llama factory
骑士9991116 天前
llama_factory 安装以及大模型微调
llama
周小码6 天前
llama-stack实战:Python构建Llama应用的可组合开发框架(8k星)
开发语言·python·llama
blackoon888 天前
DeepSeek R1大模型微调实战-llama-factory的模型下载与训练
llama
johnny2338 天前
大模型微调理论、实战:LLaMA-Factory、Unsloth
llama
闲看云起9 天前
从 GPT 到 LLaMA:解密 LLM 的核心架构——Decoder-Only 模型
gpt·架构·llama