LLM 压缩之二: ShortGPT

0. 资源链接

1. 背景动机

现有的大语言模型 LLM 推理存在以下问题:

  • LLM 模型因为 scale law 极大的提高模型的预测能力,但是同样带来较大的推理延时;对于 LLM 应用部署带来较大的挑战。

  • 目前的大模型加速的方法主要分为量化和压缩两种,目前量化和压缩一般需要训练以恢复模型精度,尤其量化较低比特时。

2. 内容提要

  • 通过分析大模型存在的冗余性,发现在模型深度的维度存在大量的冗余;可以通过简单的去除冗余层来加速。

  • 本文提出了一个 BI score 的指标来表征层的重要性,基于 BI score,本文提出一个简单的深度剪枝方法。

3. 技术细节

  • BI score 计算公式:
  • 层冗余分析:

  • Layer 剪枝

    • 基于 BI score 排序,减去 BI score 小的层。

4. 实验分析

5. 一些思考

  • ShortGPT 给大模型剪枝提供了一个新视角,对后续的剪枝算法有较大启发。

  • ShortGPT 目前还比较简单,后续应该会有更多的工作出现,优化当前的方案。

相关推荐
lili-felicity18 分钟前
CANN优化LLaMA大语言模型推理:KV-Cache与FlashAttention深度实践
人工智能·语言模型·llama
大傻^2 天前
大模型基于llama.cpp量化详解
llama·大模型量化
大傻^2 天前
大模型微调-基于llama-factory详解
llama·模型微调
空中楼阁,梦幻泡影2 天前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
蓝田生玉1232 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
木卫二号Coding2 天前
第七十七篇-V100+llama-cpp-python-server+Qwen3-30B+GGUF
开发语言·python·llama
木卫二号Coding2 天前
第七十六篇-V100+llama-cpp-python+Qwen3-30B+GGUF
开发语言·python·llama
姚华军3 天前
在本地(Windows环境)部署LLaMa-Factory,进行模型微调步骤!!!
windows·ai·llama·llama-factory
Honmaple3 天前
openclaw使用llama.cpp 本地大模型部署教程
llama
love530love3 天前
Windows 11 配置 CUDA 版 llama.cpp 并实现系统全局调用(GGUF 模型本地快速聊天)
人工智能·windows·大模型·llama·llama.cpp·gguf·cuda 加速