LLM 压缩之二: ShortGPT

0. 资源链接

1. 背景动机

现有的大语言模型 LLM 推理存在以下问题:

  • LLM 模型因为 scale law 极大的提高模型的预测能力,但是同样带来较大的推理延时;对于 LLM 应用部署带来较大的挑战。

  • 目前的大模型加速的方法主要分为量化和压缩两种,目前量化和压缩一般需要训练以恢复模型精度,尤其量化较低比特时。

2. 内容提要

  • 通过分析大模型存在的冗余性,发现在模型深度的维度存在大量的冗余;可以通过简单的去除冗余层来加速。

  • 本文提出了一个 BI score 的指标来表征层的重要性,基于 BI score,本文提出一个简单的深度剪枝方法。

3. 技术细节

  • BI score 计算公式:
  • 层冗余分析:

  • Layer 剪枝

    • 基于 BI score 排序,减去 BI score 小的层。

4. 实验分析

5. 一些思考

  • ShortGPT 给大模型剪枝提供了一个新视角,对后续的剪枝算法有较大启发。

  • ShortGPT 目前还比较简单,后续应该会有更多的工作出现,优化当前的方案。

相关推荐
try2find3 天前
安装llama-cpp-python踩坑记
开发语言·python·llama
西西弗Sisyphus4 天前
LLaMA-Factory 单卡后训练微调Qwen3完整脚本
微调·llama·llama-factory·后训练
顾道长生'4 天前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
Zhijun.li@Studio13 天前
【LLaMA-Factory 实战系列】二、WebUI 篇 - Qwen2.5-VL 多模态模型 LoRA 微调保姆级教程
人工智能·自然语言处理·llama·多模态大模型
1213414 天前
LLM:重构数字世界的“智能操作系统”
gpt·aigc·ai编程·llama·gpu算力
冷雨夜中漫步22 天前
Java中如何使用lambda表达式分类groupby
java·开发语言·windows·llama
扫地的小何尚23 天前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
CFAteam23 天前
DeepSeek AI功能演示:如何生成Verilog脚本
人工智能·ai·fpga开发·llama
Tadas-Gao1 个月前
从碳基羊驼到硅基LLaMA:开源大模型家族的生物隐喻与技术进化全景
人工智能·机器学习·大模型·llm·llama
Run_Clover1 个月前
llama-factory微调大模型环境配置避坑总结
llama