LLM 压缩之二: ShortGPT

0. 资源链接

1. 背景动机

现有的大语言模型 LLM 推理存在以下问题:

  • LLM 模型因为 scale law 极大的提高模型的预测能力,但是同样带来较大的推理延时;对于 LLM 应用部署带来较大的挑战。

  • 目前的大模型加速的方法主要分为量化和压缩两种,目前量化和压缩一般需要训练以恢复模型精度,尤其量化较低比特时。

2. 内容提要

  • 通过分析大模型存在的冗余性,发现在模型深度的维度存在大量的冗余;可以通过简单的去除冗余层来加速。

  • 本文提出了一个 BI score 的指标来表征层的重要性,基于 BI score,本文提出一个简单的深度剪枝方法。

3. 技术细节

  • BI score 计算公式:
  • 层冗余分析:

  • Layer 剪枝

    • 基于 BI score 排序,减去 BI score 小的层。

4. 实验分析

5. 一些思考

  • ShortGPT 给大模型剪枝提供了一个新视角,对后续的剪枝算法有较大启发。

  • ShortGPT 目前还比较简单,后续应该会有更多的工作出现,优化当前的方案。

相关推荐
开发者导航4 天前
【开发者导航】轻量可微调且开源的大语言模型家族:LLaMA
语言模型·开源·llama
缘友一世4 天前
借助LLama_Factory工具对大模型进行lora微调
llama
illuspas6 天前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama
herogus丶6 天前
【LLM】LLaMA-Factory 训练模型入门指南
python·ai编程·llama
illuspas6 天前
MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
人工智能·gpt·llama
谏书稀6 天前
LLaMA Factory微调大模型
python·transformer·llama
菠菠萝宝7 天前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
wuningw8 天前
Windows环境下LLaMA-Factory微调模型时“未检测到CUDA环境”
llama
喜欢吃豆9 天前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
skywalk816310 天前
在星河社区部署大模型unsloth/Llama-3.3-70B-Instruct-GGUF
llama·aistudio