【论文阅读】DaST: Data-free Substitute Training for Adversarial Attacks(2020)

摘要

Machine learning models(机器学习模型) are vulnerable(容易受到) to adversarial examples(对抗样本). For the black-box setting(对于黑盒设置), current substitute attacks(目前替代攻击) need pre-trained models(预训练模型) to generate adversarial examples(生成对抗样本). However, pre-trained models(预训练模型) are hard to obtain(很难获得) in real-world tasks(在实际任务中). In this paper, we propose a data-free substitute training method(无数据替代训练方法) (DaST) to obtain substitute models(获得替代模型) for adversarial black-box attacks(对抗性黑盒攻击) without the requirement of any real data(不需要任何真实数据). To achieve this, DaST utilizes specially designed(专门设计) generative adversarial networks(生成对抗网络) (GANs) to train the substitute models. In particular(特别地), we design a multi-branch architecture(多分支架构) and label-control loss(标签控制损失) for the generative model to deal with(处理) the uneven distribution(不均匀分布) of synthetic samples(生成样本). The substitute model is then trained by the synthetic samples(合成样本) generated by the generative model(生成模型), which are labeled by the attacked model subsequently(随后). The experiments demonstrate(实验表明) the substitute models produced by DaST can achieve competitive performance(达到有竞争力的性能) compared with the baseline models(基线模型) which are trained by the same train set(相同的训练集) with attacked models(攻击模型). Additionally(此外), to evaluate the practicability(评估实用性) of the proposed method(所提出的方法) on the real-world task(在现实世界任务), we attack an online machine learning model(在线机器学习模型) on the Microsoft Azure platform. The remote model(远程模型) misclassifies(错误分类) 98.35% of the adversarial examples crafted(制作) by our method. To the best of our knowledge(据我们所知), we are the first(第一个) to train a substitute model for adversarial attacks(对抗样本) without any real data(没有任何真实数据).

方法

总结

We have presented(提出) a data-free method DaST to train substitute models(替代模型) for adversarial attacks(对抗性攻击). DaST reduces(降低) the prerequisites(先决条件) of adversarial substitute attacks(对抗性攻击) by utilizing(利用) GANs to generate synthetic samples(生成合成样本). This is the first method that can train substitute models without the requirement of any real data(不需要任何真实数据). The experiments showed(实验表明) the effectiveness(有效性) of our method. It presented(表明) that machine learning systems have significant risks(存在重大风险), attackers can train substitute models even when the real input data is hard to collect(即使难以手机真实的输入数据).

The proposed DaST cannot generate adversarial examples alone(不能单独生成对抗性样本), it should be used with other gradient-based attack methods(应该与其他基于梯度的攻击方法一起使用). In future work, we will design a new substitute training method, which can generate attacks directly(直接). Furthermore, we will explore(探索) the defense for DaST.

论文链接

DaST: Data-free Substitute Training for Adversarial Attacks

相关推荐
热情的Dongming14 小时前
【课程总结】day34:多模态大模型之ViT模型、CLIP模型论文阅读理解
论文阅读
chencjiajy16 小时前
向量模型Jina Embedding: 从v1到v3论文笔记
论文阅读·embedding·向量模型
HollowKnightZ20 小时前
论文阅读笔记:DRCT: Saving Image Super-Resolution away from Information Bottleneck
论文阅读·笔记
苦瓜汤补钙20 小时前
论文阅读:DynamicDet: A Unified Dynamic Architecture for Object Detection
论文阅读·人工智能·目标检测
Maker~1 天前
18、论文阅读:AOD-Net:一体化除雾网络
网络·论文阅读·计算机视觉
新手小白勇闯新世界2 天前
论文阅读-用于图像识别的深度残差学习
论文阅读·人工智能·深度学习·学习·计算机视觉
大拨鼠2 天前
【多模态读论文系列】LLaMA-Adapter V2论文笔记
论文阅读·人工智能·llama
小嗷犬2 天前
【论文笔记】Dense Connector for MLLMs
论文阅读·人工智能·语言模型·大模型·多模态
新手小白勇闯新世界2 天前
论文阅读- --DeepI2P:通过深度分类进行图像到点云配准
论文阅读·深度学习·算法·计算机视觉
0x2112 天前
[论文阅读]BERT-based Lexical Substitution
论文阅读·人工智能·bert