Openai API + langchain 分析小型pdf文档

声明:该版代码在2024.08.23有效。

代码如下:

python 复制代码
from langchain_community.document_loaders import PyPDFLoader
import getpass
import os
from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate

class QA:
    """
    A class to handle question-answering tasks on a given PDF document.

    Attributes:
        question (str): The question to be answered about the PDF.
        pdf_path (str): Path to the PDF file.
        model_name (str): Name of the model used for analysis.
        docs (list): Loaded PDF documents.
        vecstore (Chroma): The vector store object for storing document embeddings.

    Methods:
        set_environ(): Set environment variables for the OpenAI API.
        load_file(): Load a PDF file using PyPDFLoader.
        split_and_store(): Split the PDF text and store embeddings using Chroma.
        retrieve_pdf(): Retrieve and answer questions based on the PDF content.
    """
    def __init__(self, question, pdf_path, model_name):
        """
        Initializes the QA object with provided question, PDF path, and model name.

        Parameters:
            question (str): The question to be answered about the PDF.
            pdf_path (str): Path to the PDF file.
            model_name (str): Name of the model used for analysis.
        """
        self.question = question
        self.pdf_path = pdf_path
        self.model_name = model_name
        self.docs = None
        self.vecstore = None

    def set_environ(self):
        """
        Sets the environment variables necessary for OpenAI API authentication.
        """
        os.environ['OPENAI_API_KEY'] = input("your api:")
        os.environ['OPENAI_PROXY'] = 'http://127.0.0.1:20171'

    def load_file(self):
        """
        Loads the PDF file specified by the pdf_path attribute using PyPDFLoader.
        """
        loader = PyPDFLoader(self.pdf_path)
        self.docs = loader.load()

    def split_and_store(self):
        """
        Splits the loaded PDF text into manageable chunks and stores the embeddings in a vector store.
        """
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        splits = text_splitter.split_documents(self.docs)
        self.vecstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

    def retrieve_pdf(self):
        """
        Retrieves context from the vector store and generates an answer to the input question
        using a retrieval-augmented generation chain.
        """
        retriever = self.vecstore.as_retriever()
        llm = ChatOpenAI(model="gpt-4o")

        system_prompt = (
            "You are an assistant for question-answering tasks. "
            "Use the following pieces of retrieved context to answer "
            "the question. If you don't know the answer, say that you "
            "don't know. Use three sentences maximum and keep the "
            "answer concise."
            "\n\n"
            "{context}"
        )

        prompt = ChatPromptTemplate.from_messages(
            [
                ("system", system_prompt),
                ("human", "{input}"),
            ]
        )

        question_answer_chain = create_stuff_documents_chain(llm, prompt)
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)

        results = rag_chain.invoke({"input": self.question})

        print(results['answer'])

    def run(self):
        self.set_environ()
        self.load_file()
        self.split_and_store()
        self.retrieve_pdf()

def __main__():
    """
    Main function to execute the QA class functionality.

    Prompts user for input parameters, creates a QA object, and processes the specified PDF.
    """
    question = input("Your question:")
    pdf_path = input("Enter the path of the pdf file:")
    model_name = input("Enter the model name:")
    qa = QA(question, pdf_path, model_name)
    qa.run()

if __name__ == "__main__":
    __main__()
相关推荐
-To be number.wan7 小时前
Python数据分析:时间序列数据分析
开发语言·python·数据分析
Faker66363aaa8 小时前
YOLO13-C3K2-AdditiveBlock:水果质量智能检测系统_3
python
2401_828890648 小时前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
jz_ddk9 小时前
[指南] Python循环语句完全指南
开发语言·python·continue·循环·for·while·break
Evand J9 小时前
【Python代码例程】长短期记忆网络(LSTM)和无迹卡尔曼滤波(UKF)的结合,处理复杂非线性系统和时间序列数据
python·lstm·滤波
workflower10 小时前
易用性和人性化需求
java·python·测试用例·需求分析·big data·软件需求
嚯嚯歪10 小时前
攻克腾讯 TCaptcha 滑块验证码:纯 HTTP 协议逆向实战
爬虫·python·逆向·验证码识别
じ☆冷颜〃10 小时前
随机微分层论:统一代数、拓扑与分析框架下的SPDE论述
笔记·python·学习·线性代数·拓扑学
小灵不想卷10 小时前
LangChain4 初体验
java·langchain·langchain4j
程序员敲代码吗11 小时前
提升Python编程效率的五大特性
开发语言·python