Openai API + langchain 分析小型pdf文档

声明:该版代码在2024.08.23有效。

代码如下:

python 复制代码
from langchain_community.document_loaders import PyPDFLoader
import getpass
import os
from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate

class QA:
    """
    A class to handle question-answering tasks on a given PDF document.

    Attributes:
        question (str): The question to be answered about the PDF.
        pdf_path (str): Path to the PDF file.
        model_name (str): Name of the model used for analysis.
        docs (list): Loaded PDF documents.
        vecstore (Chroma): The vector store object for storing document embeddings.

    Methods:
        set_environ(): Set environment variables for the OpenAI API.
        load_file(): Load a PDF file using PyPDFLoader.
        split_and_store(): Split the PDF text and store embeddings using Chroma.
        retrieve_pdf(): Retrieve and answer questions based on the PDF content.
    """
    def __init__(self, question, pdf_path, model_name):
        """
        Initializes the QA object with provided question, PDF path, and model name.

        Parameters:
            question (str): The question to be answered about the PDF.
            pdf_path (str): Path to the PDF file.
            model_name (str): Name of the model used for analysis.
        """
        self.question = question
        self.pdf_path = pdf_path
        self.model_name = model_name
        self.docs = None
        self.vecstore = None

    def set_environ(self):
        """
        Sets the environment variables necessary for OpenAI API authentication.
        """
        os.environ['OPENAI_API_KEY'] = input("your api:")
        os.environ['OPENAI_PROXY'] = 'http://127.0.0.1:20171'

    def load_file(self):
        """
        Loads the PDF file specified by the pdf_path attribute using PyPDFLoader.
        """
        loader = PyPDFLoader(self.pdf_path)
        self.docs = loader.load()

    def split_and_store(self):
        """
        Splits the loaded PDF text into manageable chunks and stores the embeddings in a vector store.
        """
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        splits = text_splitter.split_documents(self.docs)
        self.vecstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

    def retrieve_pdf(self):
        """
        Retrieves context from the vector store and generates an answer to the input question
        using a retrieval-augmented generation chain.
        """
        retriever = self.vecstore.as_retriever()
        llm = ChatOpenAI(model="gpt-4o")

        system_prompt = (
            "You are an assistant for question-answering tasks. "
            "Use the following pieces of retrieved context to answer "
            "the question. If you don't know the answer, say that you "
            "don't know. Use three sentences maximum and keep the "
            "answer concise."
            "\n\n"
            "{context}"
        )

        prompt = ChatPromptTemplate.from_messages(
            [
                ("system", system_prompt),
                ("human", "{input}"),
            ]
        )

        question_answer_chain = create_stuff_documents_chain(llm, prompt)
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)

        results = rag_chain.invoke({"input": self.question})

        print(results['answer'])

    def run(self):
        self.set_environ()
        self.load_file()
        self.split_and_store()
        self.retrieve_pdf()

def __main__():
    """
    Main function to execute the QA class functionality.

    Prompts user for input parameters, creates a QA object, and processes the specified PDF.
    """
    question = input("Your question:")
    pdf_path = input("Enter the path of the pdf file:")
    model_name = input("Enter the model name:")
    qa = QA(question, pdf_path, model_name)
    qa.run()

if __name__ == "__main__":
    __main__()
相关推荐
Yan-英杰2 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
weixin_307779131 小时前
Azure上基于OpenAI GPT-4模型验证行政区域数据的设计方案
数据仓库·python·云计算·aws
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
多想和从前一样5 小时前
Django 创建表时 “__str__ ”方法的使用
后端·python·django
小喵要摸鱼6 小时前
【Pytorch 库】自定义数据集相关的类
pytorch·python
bdawn6 小时前
深度集成DeepSeek大模型:WebSocket流式聊天实现
python·websocket·openai·api·实时聊天·deepseek大模型·流式输出
Jackson@ML6 小时前
Python数据可视化简介
开发语言·python·数据可视化
mosquito_lover16 小时前
怎么把pyqt界面做的像web一样漂亮
前端·python·pyqt
mengyoufengyu7 小时前
算法12-贪心算法
python·算法·贪心算法
T_Y99437 小时前
pythonrsa加密与sha256加密
python