神经网络——最大池化

1.Pooling Layers讲解:

最大池化有时也被称为下采样,对应的有上采样。注意ceil_mode参数的使用

2.代码实战:

python 复制代码
import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)

input=torch.reshape(input,(-1,1,5,5))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxpool1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

最大池化无法在长整型的数据上执行。生成tensor时可以使用dtype参数改变其数据类型,比如从长整型变为浮点型。

最大池化的作用:保留输入数据的特征并减小数据的规模。

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data", train=False,
                                       transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("logs_maxpool")
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output",output, step)
    step = step + 1

writer.close()
相关推荐
VertGrow AI销冠7 分钟前
Vertgrow Ai销冠:全面提升销售效率的AI驱动销售平台
人工智能
江瀚视野11 分钟前
昆仑芯启动港股上市:一枚芯片,如何折射百度全栈AI能力?
大数据·人工智能
人工智能培训17 分钟前
强化学习路径规划:技术内核与应用实践
人工智能·大模型·知识图谱·强化学习·智能体搭建
孟祥_成都20 分钟前
让 AI 自动写 SQL、读文档,前端也能玩转 Agent! langchain chains 模块解析
前端·人工智能
Coder_Boy_21 分钟前
基于LangChain4j的证券业务系统模块四
大数据·人工智能·spring cloud·langchain
V搜xhliang024624 分钟前
多模态MRI影像组学预测脑胶质瘤分子分型的研究进展
人工智能
爱写代码的小朋友32 分钟前
技术赋能教育革新:教育信息化与AI、计算机科学的融合发展研究
人工智能
jkyy201435 分钟前
食材图像识别与个性化饮食:智能家电如何重构膳食健康管理?
大数据·人工智能·物联网·健康医疗
kisshuan1239640 分钟前
基于Mask-RCNN与Res2Net的排水系统缺陷检测与分类
人工智能·数据挖掘
P.H. Infinity1 小时前
【QLIB】一、系统架构
人工智能·金融