神经网络——最大池化

1.Pooling Layers讲解:

最大池化有时也被称为下采样,对应的有上采样。注意ceil_mode参数的使用

2.代码实战:

python 复制代码
import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)

input=torch.reshape(input,(-1,1,5,5))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxpool1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

最大池化无法在长整型的数据上执行。生成tensor时可以使用dtype参数改变其数据类型,比如从长整型变为浮点型。

最大池化的作用:保留输入数据的特征并减小数据的规模。

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data", train=False,
                                       transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("logs_maxpool")
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output",output, step)
    step = step + 1

writer.close()
相关推荐
0x2113 分钟前
[论文阅读]ReAct: Synergizing Reasoning and Acting in Language Models
人工智能·语言模型·自然语言处理
何大春13 分钟前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
mucheni15 分钟前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence16 分钟前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理
猿饵块27 分钟前
opencv--图像变换
人工智能·opencv·计算机视觉
LucianaiB35 分钟前
【金仓数据库征文】_AI 赋能数据库运维:金仓KES的智能化未来
运维·数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
jndingxin1 小时前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长1 小时前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI1 小时前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆1 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr