1.Pooling Layers讲解:
最大池化有时也被称为下采样,对应的有上采样。注意ceil_mode参数的使用
2.代码实战:
python
import torch
from torch import nn
from torch.nn import MaxPool2d
input=torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float32)
input=torch.reshape(input,(-1,1,5,5))
print(input.shape)
class Tudui(nn.Module):
def __init__(self):
super(Tudui,self).__init__()
self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output=self.maxpool1(input)
return output
tudui=Tudui()
output=tudui(input)
print(output)
最大池化无法在长整型的数据上执行。生成tensor时可以使用dtype参数改变其数据类型,比如从长整型变为浮点型。
最大池化的作用:保留输入数据的特征并减小数据的规模。
python
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./data", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
tudui = Tudui()
writer = SummaryWriter("logs_maxpool")
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images("input", imgs, step)
output = tudui(imgs)
writer.add_images("output",output, step)
step = step + 1
writer.close()