神经网络——最大池化

1.Pooling Layers讲解:

最大池化有时也被称为下采样,对应的有上采样。注意ceil_mode参数的使用

2.代码实战:

python 复制代码
import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)

input=torch.reshape(input,(-1,1,5,5))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxpool1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

最大池化无法在长整型的数据上执行。生成tensor时可以使用dtype参数改变其数据类型,比如从长整型变为浮点型。

最大池化的作用:保留输入数据的特征并减小数据的规模。

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data", train=False,
                                       transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("logs_maxpool")
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output",output, step)
    step = step + 1

writer.close()
相关推荐
星爷AG I3 分钟前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术3 分钟前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python
递归尽头是星辰20 分钟前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
gihigo199823 分钟前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
min18112345636 分钟前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
20130924162740 分钟前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664551 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习
爱喝可乐的老王1 小时前
神经网络的基础:核心是 “搭积木 + 激活信号”
人工智能·深度学习·神经网络
梁辰兴1 小时前
FSD入华将如何改变我国自动驾驶市场格局?
人工智能·科技·机器学习·自动驾驶·特斯拉·fds·梁辰兴
AI营销实验室1 小时前
AI营销破解券商获客难引领2026增长新范式
人工智能·microsoft