神经网络——最大池化

1.Pooling Layers讲解:

最大池化有时也被称为下采样,对应的有上采样。注意ceil_mode参数的使用

2.代码实战:

python 复制代码
import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)

input=torch.reshape(input,(-1,1,5,5))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        output=self.maxpool1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

最大池化无法在长整型的数据上执行。生成tensor时可以使用dtype参数改变其数据类型,比如从长整型变为浮点型。

最大池化的作用:保留输入数据的特征并减小数据的规模。

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data", train=False,
                                       transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("logs_maxpool")
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output",output, step)
    step = step + 1

writer.close()
相关推荐
AI_Auto2 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻3 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood3 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头3 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs4 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding4 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊4 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德5 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算5 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn5 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap