【大模型系列篇】预训练模型:BERT & GPT

2018 年,Google 首次推出 BERT(Bidirectional Encoder Representations from Transformers)。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。 BERT 的目标是创建一种语言模型,可以理解句子中单词的上下文和含义,同时考虑到它前后出现的单词。

2018 年,OpenAI 首次推出 GPT(Generative Pre-trained Transformer)。与 BERT 一样,GPT 也是一种大规模预训练语言模型。但是,GPT 是一种生成模型,它能够自行生成文本。 GPT 的目标是创建一种语言模型,该模型可以生成连贯且适当的上下文文本。

BERT和GPT是两种基于Transformer架构的预训练模型,BERT侧重于理解句子中的上下文和含义,适合词语级别的任务;而GPT则专注于生成连贯的文本,适用于生成式任务。两者在训练方式、任务目标和适用场景上有所不同,BERT使用掩码语言模型和下一句预测,GPT采用自回归语言模型。

首先我们拿BERT、GPT和ELMo【关于ELMO在上篇《词向量 - 从Word2Vec到ELMo》中已经有介绍】的模型结构图做一个简要对比,可以帮助更清晰的理解三类模型的差异。

BERT是基于Transformer架构的双向编码器。它通过掩码语言建模和下一个句子预测的任务进行无监督预训练。

GPT是基于Transformer架构,它是一个单向的生成式模型。GPT通过自回归方式预训练,即根据前面的词预测下一个词。

简单来说,如果我们把 ELMO 的特征抽取器(LSTM)换成Transformer,那么我们会得到 BERT模型结构。如果我们把 GPT 预训练阶段换成双向语言模型,也会得到 BERT模型结构。

BERT, GPT之间的不同点

  • 关于特征提取器:

    • GPT和BERT采用Transformer进行特征提取;

    • BERT采用的是Transformer架构中的Encoder模块;

    • GPT采用的是Transformer架构中的Decoder模块。

  • 单/双向语言模型:

    • GPT和BERT都源于Transformer架构;

    • GPT的单向语言模型采用了经过修改后的Decoder模块,Decoder采用了look-ahead mask,只能看到context before上文信息,未来的信息都被mask掉了;

    • BERT的双向语言模型采用了Encoder模块,Encoder只采用了padding mask,可以同时看到context before上文信息,以及context after下文信息。

很多NLP任务表明Transformer的特征提取能力强于LSTM,

对于ELMo而言,采用1层静态token embedding + 2层LSTM,提取特征的能力有限。

BERT, GPT各自的优点和缺点

  • GPT:

    • 优点:GPT使用了Transformer提取特征,使得模型能力大幅提升。

    • 缺点:GPT只使用了单向Decoder,无法融合未来的信息。

  • BERT:

    • 优点:BERT使用了双向Transformer提取特征,使得模型能力大幅提升。添加了两个预训练任务, 掩蔽语言模型(MLM) + 下一句预测(NSP)的多任务方式进行模型预训练。

    • 缺点:模型过于庞大,参数量太多,需要的数据和算力要求过高,训练好的模型应用场景要求高。更适合用于语言嵌入表达,语言理解方面的任务,不适合用于生成式的任务。

相关推荐
Jaly_W3 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
小嗷犬5 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙12 分钟前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖29 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂41 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者42 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技2 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试