【大模型系列篇】预训练模型:BERT & GPT

2018 年,Google 首次推出 BERT(Bidirectional Encoder Representations from Transformers)。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。 BERT 的目标是创建一种语言模型,可以理解句子中单词的上下文和含义,同时考虑到它前后出现的单词。

2018 年,OpenAI 首次推出 GPT(Generative Pre-trained Transformer)。与 BERT 一样,GPT 也是一种大规模预训练语言模型。但是,GPT 是一种生成模型,它能够自行生成文本。 GPT 的目标是创建一种语言模型,该模型可以生成连贯且适当的上下文文本。

BERT和GPT是两种基于Transformer架构的预训练模型,BERT侧重于理解句子中的上下文和含义,适合词语级别的任务;而GPT则专注于生成连贯的文本,适用于生成式任务。两者在训练方式、任务目标和适用场景上有所不同,BERT使用掩码语言模型和下一句预测,GPT采用自回归语言模型。

首先我们拿BERT、GPT和ELMo【关于ELMO在上篇《词向量 - 从Word2Vec到ELMo》中已经有介绍】的模型结构图做一个简要对比,可以帮助更清晰的理解三类模型的差异。

BERT是基于Transformer架构的双向编码器。它通过掩码语言建模和下一个句子预测的任务进行无监督预训练。

GPT是基于Transformer架构,它是一个单向的生成式模型。GPT通过自回归方式预训练,即根据前面的词预测下一个词。

简单来说,如果我们把 ELMO 的特征抽取器(LSTM)换成Transformer,那么我们会得到 BERT模型结构。如果我们把 GPT 预训练阶段换成双向语言模型,也会得到 BERT模型结构。

BERT, GPT之间的不同点

  • 关于特征提取器:

    • GPT和BERT采用Transformer进行特征提取;

    • BERT采用的是Transformer架构中的Encoder模块;

    • GPT采用的是Transformer架构中的Decoder模块。

  • 单/双向语言模型:

    • GPT和BERT都源于Transformer架构;

    • GPT的单向语言模型采用了经过修改后的Decoder模块,Decoder采用了look-ahead mask,只能看到context before上文信息,未来的信息都被mask掉了;

    • BERT的双向语言模型采用了Encoder模块,Encoder只采用了padding mask,可以同时看到context before上文信息,以及context after下文信息。

很多NLP任务表明Transformer的特征提取能力强于LSTM,

对于ELMo而言,采用1层静态token embedding + 2层LSTM,提取特征的能力有限。

BERT, GPT各自的优点和缺点

  • GPT:

    • 优点:GPT使用了Transformer提取特征,使得模型能力大幅提升。

    • 缺点:GPT只使用了单向Decoder,无法融合未来的信息。

  • BERT:

    • 优点:BERT使用了双向Transformer提取特征,使得模型能力大幅提升。添加了两个预训练任务, 掩蔽语言模型(MLM) + 下一句预测(NSP)的多任务方式进行模型预训练。

    • 缺点:模型过于庞大,参数量太多,需要的数据和算力要求过高,训练好的模型应用场景要求高。更适合用于语言嵌入表达,语言理解方面的任务,不适合用于生成式的任务。

相关推荐
Light6011 小时前
智链全球,韧性履约:AI赋能新一代海外EPC/EPCM项目管理解决方案
人工智能·数字孪生·风险管理·ai赋能·海外epc/epcm·智慧项目管理·协同增效
棒棒的皮皮12 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
2501_9418043213 小时前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch13 小时前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
档案宝档案管理13 小时前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
wenzhangli713 小时前
Ooder A2UI 框架中的矢量图形全面指南
人工智能
躺柒14 小时前
读共生:4.0时代的人机关系07工作者
人工智能·ai·自动化·人机交互·人机对话·人机关系
码丽莲梦露14 小时前
ICLR2025年与运筹优化相关文章
人工智能·运筹优化
ai_top_trends14 小时前
2026 年度工作计划 PPT 模板与 AI 生成方法详解
人工智能·python·powerpoint
小真zzz14 小时前
2025年度AIPPT行业年度总结报告
人工智能·ai·powerpoint·ppt·aippt