使用Pydot和graphviz画TensorRT的Engine图

使用Pydot和graphviz画TensorRT的Engine图

TensorRT支持很多层的融合,目的是为了优化访存,减少数据在每层之间传输的消耗。

融之后的模型,一般无法通过Netron查看,毕竟TensorRT是闭源的,如果我们想看到融合后的模型长什么样,只要在build engine开启verbose模式即可。

复制代码
./trtexec --explicitBatch --onnx=debug.onnx --saveEngine=debug.trt  --verbose

[V] [TRT] Engine Layer Information:
Layer(Scale): QuantizeLinear_2_quantize_scale_node, Tactic: 0, input[Float(1,3,-17,-18)] -> 255[Int8(1,3,-17,-18)]
Layer(CaskConvolution): conv1.weight + QuantizeLinear_7_quantize_scale_node + Conv_9 + Relu_11, Tactic: 4438325421691896755, 255[Int8(1,3,-17,-18)] -> 267[Int8(1,64,-40,-44)]
Layer(CudaPooling): MaxPool_12, Tactic: -3, 267[Int8(1,64,-40,-44)] -> Reformatted Output Tensor 0 to MaxPool_12[Int8(1,64,-21,-24)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to MaxPool_12, Tactic: 0, Reformatted Output Tensor 0 to MaxPool_12[Int8(1,64,-21,-24)] -> 270[Int8(1,64,-21,-24)]
Layer(CaskConvolution): layer1.0.conv1.weight + QuantizeLinear_20_quantize_scale_node + Conv_22 + Relu_24, Tactic: 4871133328510103657, 270[Int8(1,64,-21,-24)] -> 284[Int8(1,64,-21,-24)]
Layer(CaskConvolution): layer1.0.conv2.weight + QuantizeLinear_32_quantize_scale_node + Conv_34 + Add_42 + Relu_43, Tactic: 4871133328510103657, 284[Int8(1,64,-21,-24)], 270[Int8(1,64,-21,-24)] -> 305[Int8(1,64,-21,-24)]

pyplot代码

https://github.com/pytorch/pytorch/pull/66431/files

engine_layer_visualize.py

这是jerryzh168大神开源的Facebook内部查看engine的工具,使用pydot和graphviz来画神经网络结构图

复制代码
pip install pydot
conda install python-graphviz

需要注意我们需要输入log_file也就是刚才开启Verbose的构建信息,然后profile_file则是使用TensorRT来profile的信息,最简单的可以通过trtexec这样获取到:

复制代码
./trtexec --loadEngine=debug_int8.trt --dumpProfile --shapes=input:1x3x512x512 --exportProfile=debug_profile

然后通过上述代码生成EngineLayers_0.dot

复制代码
import pydot

graphs = pydot.graph_from_dot_file("EngineLayers_0.dot")
graph = graphs[0]
graph.write_png("trt_engine.png")

TensorRT-engine 模型输入是Float而输出是Int8。这个模型是由TensorRT官方提供的pytorch-quantization[1]工具对Pytorch模型进行量化后导出ONNX,然后再由TensorRT-8转化得到的engine,这个engine的精度是INT8。

相关推荐
兔兔西23 分钟前
【AI学习】检索增强生成(Retrieval Augmented Generation,RAG)
人工智能
#guiyin1128 分钟前
基于机器学习的心脏病预测模型构建与可解释性分析
人工智能·机器学习
IMA小队长43 分钟前
06.概念二:神经网络
人工智能·深度学习·机器学习·transformer
罗西的思考1 小时前
探秘Transformer系列之(35)--- 大模型量化基础
人工智能·深度学习·机器学习
AI大模型系统化学习1 小时前
AI产品风向标:从「工具属性」到「认知引擎」的架构跃迁
大数据·人工智能·ai·架构·大模型·ai大模型·大模型学习
拾忆-eleven3 小时前
NLP学习路线图(十六):N-gram模型
人工智能·学习·自然语言处理
编程有点难3 小时前
Python训练打卡Day39
人工智能·python·深度学习
小喵喵生气气3 小时前
Python60日基础学习打卡Day40
人工智能·深度学习·机器学习
广州智造4 小时前
OptiStruct实例:消声器前盖ERP分析(2)RADSND基础理论
数据库·人工智能·算法·机器学习·数学建模·3d·软件构建
爱写代码的小朋友4 小时前
智变与重构:AI 赋能基础教育教学的范式转型研究报告
人工智能·重构