使用Pydot和graphviz画TensorRT的Engine图

使用Pydot和graphviz画TensorRT的Engine图

TensorRT支持很多层的融合,目的是为了优化访存,减少数据在每层之间传输的消耗。

融之后的模型,一般无法通过Netron查看,毕竟TensorRT是闭源的,如果我们想看到融合后的模型长什么样,只要在build engine开启verbose模式即可。

复制代码
./trtexec --explicitBatch --onnx=debug.onnx --saveEngine=debug.trt  --verbose

[V] [TRT] Engine Layer Information:
Layer(Scale): QuantizeLinear_2_quantize_scale_node, Tactic: 0, input[Float(1,3,-17,-18)] -> 255[Int8(1,3,-17,-18)]
Layer(CaskConvolution): conv1.weight + QuantizeLinear_7_quantize_scale_node + Conv_9 + Relu_11, Tactic: 4438325421691896755, 255[Int8(1,3,-17,-18)] -> 267[Int8(1,64,-40,-44)]
Layer(CudaPooling): MaxPool_12, Tactic: -3, 267[Int8(1,64,-40,-44)] -> Reformatted Output Tensor 0 to MaxPool_12[Int8(1,64,-21,-24)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to MaxPool_12, Tactic: 0, Reformatted Output Tensor 0 to MaxPool_12[Int8(1,64,-21,-24)] -> 270[Int8(1,64,-21,-24)]
Layer(CaskConvolution): layer1.0.conv1.weight + QuantizeLinear_20_quantize_scale_node + Conv_22 + Relu_24, Tactic: 4871133328510103657, 270[Int8(1,64,-21,-24)] -> 284[Int8(1,64,-21,-24)]
Layer(CaskConvolution): layer1.0.conv2.weight + QuantizeLinear_32_quantize_scale_node + Conv_34 + Add_42 + Relu_43, Tactic: 4871133328510103657, 284[Int8(1,64,-21,-24)], 270[Int8(1,64,-21,-24)] -> 305[Int8(1,64,-21,-24)]

pyplot代码

https://github.com/pytorch/pytorch/pull/66431/files

engine_layer_visualize.py

这是jerryzh168大神开源的Facebook内部查看engine的工具,使用pydot和graphviz来画神经网络结构图

复制代码
pip install pydot
conda install python-graphviz

需要注意我们需要输入log_file也就是刚才开启Verbose的构建信息,然后profile_file则是使用TensorRT来profile的信息,最简单的可以通过trtexec这样获取到:

复制代码
./trtexec --loadEngine=debug_int8.trt --dumpProfile --shapes=input:1x3x512x512 --exportProfile=debug_profile

然后通过上述代码生成EngineLayers_0.dot

复制代码
import pydot

graphs = pydot.graph_from_dot_file("EngineLayers_0.dot")
graph = graphs[0]
graph.write_png("trt_engine.png")

TensorRT-engine 模型输入是Float而输出是Int8。这个模型是由TensorRT官方提供的pytorch-quantization[1]工具对Pytorch模型进行量化后导出ONNX,然后再由TensorRT-8转化得到的engine,这个engine的精度是INT8。

相关推荐
Blossom.1184 分钟前
基于知识图谱+LLM的工业设备故障诊断:从SQL日志到可解释推理的实战闭环
人工智能·python·sql·深度学习·算法·transformer·知识图谱
t梧桐树t10 分钟前
spring AI都能做什么
java·人工智能·spring
lpfasd12315 分钟前
AI 时代,编程语言战争会终止吗?
人工智能
WLJT12312312320 分钟前
芯片与电流:点亮生活的科技力量
大数据·人工智能·科技·生活
CoovallyAIHub24 分钟前
NeurIPS 2025时间检验奖:10年之后再谈Faster R-CNN
深度学习·算法·计算机视觉
syounger34 分钟前
德军 SAP 迁移受阻:S4/HANA 系统功能不稳定,全面上线再度推迟
大数据·人工智能
声网36 分钟前
全球首个语音 AI 广告平台问世;Sam Altman 与 Jony Ive:合作新硬件将「如湖畔山间小屋般平静」丨日报
人工智能
CoovallyAIHub36 分钟前
1024层网络让强化学习性能飙升50倍,NeurIPS 2025最佳论文揭示深度scaling的力量
深度学习·算法·计算机视觉
Yeats_Liao40 分钟前
CANN Samples(七):视频与流媒体:RTSP与多路输入实战
人工智能·机器学习·音视频
玖日大大1 小时前
X-AnyLabeling-实践使用AI驱动的图像
人工智能