C++:Opencv读取ONNX模型,通俗易懂

1. 准备 ONNX 模型

假设你已经有一个训练好的 ONNX 模型文件。可以从各类深度学习框架(如 PyTorch、TensorFlow)中导出 ONNX 模型。例如,下面是一个简单的 PyTorch 模型导出为 ONNX 文件的示例:

cpp 复制代码
import torch
import torchvision.models as models

# Load a pre-trained model (e.g., ResNet18)
model = models.resnet18(pretrained=True)
model.eval()

# Dummy input for tracing
dummy_input = torch.randn(1, 3, 224, 224)

# Export the model to ONNX format
torch.onnx.export(model, dummy_input, "resnet18.onnx")

2. 读取 ONNX 模型

在 OpenCV 中,你可以使用 cv::dnn::readNetFromONNX 函数加载 ONNX 模型。

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>

int main() {
    // 模型文件路径
    std::string modelFile = "resnet18.onnx";

    // 从 ONNX 文件中读取模型
    cv::dnn::Net net = cv::dnn::readNetFromONNX(modelFile);

    // 检查模型是否成功加载
    if (net.empty()) {
        std::cerr << "Failed to load network!" << std::endl;
        return -1;
    }

    return 0;
}

3. 预处理输入图像

在进行推理之前,需要将输入图像预处理成模型所需的格式。通常,这包括调整图像大小、归一化等。

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>

int main() {
    // 模型文件路径
    std::string modelFile = "resnet18.onnx";
    cv::dnn::Net net = cv::dnn::readNetFromONNX(modelFile);

    if (net.empty()) {
        std::cerr << "Failed to load network!" << std::endl;
        return -1;
    }

    // 读取输入图像
    cv::Mat img = cv::imread("image.jpg");

    if (img.empty()) {
        std::cerr << "Failed to read image!" << std::endl;
        return -1;
    }

    // 将图像调整为模型所需的大小和格式
    cv::Mat blob = cv::dnn::blobFromImage(img, 1.0, cv::Size(224, 224), cv::Scalar(104.0, 117.0, 123.0), true, false);

    // 设置网络的输入
    net.setInput(blob);

    // 执行前向传播以获得输出
    cv::Mat output = net.forward();

    // 输出处理
    std::cout << "Output size: " << output.size << std::endl;

    return 0;
}

4. 进行推理

在前面的代码中,已经包含了执行推理的步骤。net.forward() 函数会返回模型的输出结果。

5. 处理和显示结果

通常,推理结果需要根据模型的输出进行处理。例如,如果是图像分类模型,你可能需要将输出的向量映射到类别标签

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>

int main() {
    // 模型文件路径
    std::string modelFile = "resnet18.onnx";
    cv::dnn::Net net = cv::dnn::readNetFromONNX(modelFile);

    if (net.empty()) {
        std::cerr << "Failed to load network!" << std::endl;
        return -1;
    }

    // 读取输入图像
    cv::Mat img = cv::imread("image.jpg");

    if (img.empty()) {
        std::cerr << "Failed to read image!" << std::endl;
        return -1;
    }

    // 将图像调整为模型所需的大小和格式
    cv::Mat blob = cv::dnn::blobFromImage(img, 1.0, cv::Size(224, 224), cv::Scalar(104.0, 117.0, 123.0), true, false);

    // 设置网络的输入
    net.setInput(blob);

    // 执行前向传播以获得输出
    cv::Mat output = net.forward();

    // 处理输出
    cv::Point classId;
    double confidence;
    cv::minMaxLoc(output, 0, &confidence, 0, &classId);
    
    std::cout << "Predicted class ID: " << classId.x << std::endl;
    std::cout << "Confidence: " << confidence << std::endl;

    return 0;
}
相关推荐
arbboter6 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus18 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能23 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客29 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条36 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po37 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条38 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞42 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君1 小时前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合