深度学习系列73:使用rapidStructure进行版面分析

1. 概述

项目地址https://github.com/RapidAI/RapidStructure?tab=readme-ov-file

2. 文档方向分类示例

安装$ pip install rapid-orientation

import cv2
from rapid_orientation import RapidOrientation
orientation_engine = RapidOrientation()
img = cv2.imread('test_images/layout.png')
orientation_res, elapse = orientation_engine(img)
print(orientation_res)
# 返回结果为str类型,有四类:0 | 90 | 180 | 270

3. 版面分析RapidLayout

安装$ pip install rapid-layout

import cv2
from rapid_layout import RapidLayout, VisLayout

# model_type类型参见上表。指定不同model_type时,会自动下载相应模型到安装目录下的。
layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla")

img = cv2.imread('test_images/layout.png')

boxes, scores, class_names, elapse = layout_engine(img)
ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names)
if ploted_img is not None:
    cv2.imwrite("layout_res.png", ploted_img)

4. 文字识别和表格识别rapid_table

from rapid_table import RapidTable, VisTable

# RapidTable类提供model_path参数,可以自行指定上述2个模型,默认是en_ppstructure_mobile_v2_SLANet.onnx
# table_engine = RapidTable(model_path='ch_ppstructure_mobile_v2_SLANet.onnx')
table_engine = RapidTable()
ocr_engine = RapidOCR()
viser = VisTable()

img_path = 'test_images/table.jpg'

ocr_result, _ = ocr_engine(img_path)
table_html_str, table_cell_bboxes, elapse = table_engine(img_path, ocr_result)

5. latex识别rapidLaTexOCR

from rapid_latex_ocr import LatexOCR
model = LatexOCR()
img_path = "tests/test_files/6.png"
with open(img_path, "rb") as f:
    data = f.read()
res, elapse = model(data)

6. 整合版:RapidOCRPDF

# 基于CPU 依赖rapidocr_onnxruntime
pip install rapidocr_pdf[onnxruntime]
# 基于CPU 依赖rapidocr_openvino 更快
pip install rapidocr_pdf[openvino]
# 基于GPU 依赖rapidocr_paddle
pip install rapidocr_pdf[paddle]

使用:

from rapidocr_pdf import PDFExtracter
pdf_extracter = PDFExtracter()
pdf_path = 'tests/test_files/direct_and_image.pdf'
texts = pdf_extracter(pdf_path, force_ocr=False)
print(texts)
相关推荐
喵~来学编程啦22 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司35 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富3 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘