深度学习系列73:使用rapidStructure进行版面分析

1. 概述

项目地址https://github.com/RapidAI/RapidStructure?tab=readme-ov-file

2. 文档方向分类示例

安装$ pip install rapid-orientation

复制代码
import cv2
from rapid_orientation import RapidOrientation
orientation_engine = RapidOrientation()
img = cv2.imread('test_images/layout.png')
orientation_res, elapse = orientation_engine(img)
print(orientation_res)
# 返回结果为str类型,有四类:0 | 90 | 180 | 270

3. 版面分析RapidLayout

安装$ pip install rapid-layout

复制代码
import cv2
from rapid_layout import RapidLayout, VisLayout

# model_type类型参见上表。指定不同model_type时,会自动下载相应模型到安装目录下的。
layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla")

img = cv2.imread('test_images/layout.png')

boxes, scores, class_names, elapse = layout_engine(img)
ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names)
if ploted_img is not None:
    cv2.imwrite("layout_res.png", ploted_img)

4. 文字识别和表格识别rapid_table

复制代码
from rapid_table import RapidTable, VisTable

# RapidTable类提供model_path参数,可以自行指定上述2个模型,默认是en_ppstructure_mobile_v2_SLANet.onnx
# table_engine = RapidTable(model_path='ch_ppstructure_mobile_v2_SLANet.onnx')
table_engine = RapidTable()
ocr_engine = RapidOCR()
viser = VisTable()

img_path = 'test_images/table.jpg'

ocr_result, _ = ocr_engine(img_path)
table_html_str, table_cell_bboxes, elapse = table_engine(img_path, ocr_result)

5. latex识别rapidLaTexOCR

复制代码
from rapid_latex_ocr import LatexOCR
model = LatexOCR()
img_path = "tests/test_files/6.png"
with open(img_path, "rb") as f:
    data = f.read()
res, elapse = model(data)

6. 整合版:RapidOCRPDF

复制代码
# 基于CPU 依赖rapidocr_onnxruntime
pip install rapidocr_pdf[onnxruntime]
# 基于CPU 依赖rapidocr_openvino 更快
pip install rapidocr_pdf[openvino]
# 基于GPU 依赖rapidocr_paddle
pip install rapidocr_pdf[paddle]

使用:

复制代码
from rapidocr_pdf import PDFExtracter
pdf_extracter = PDFExtracter()
pdf_path = 'tests/test_files/direct_and_image.pdf'
texts = pdf_extracter(pdf_path, force_ocr=False)
print(texts)
相关推荐
MYH5162 分钟前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊9 分钟前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin2 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮2 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻2 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑2 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love3 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
狂小虎3 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
A林玖3 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
Jamence3 小时前
多模态大语言模型arxiv论文略读(108)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记