深度学习系列73:使用rapidStructure进行版面分析

1. 概述

项目地址https://github.com/RapidAI/RapidStructure?tab=readme-ov-file

2. 文档方向分类示例

安装$ pip install rapid-orientation

import cv2
from rapid_orientation import RapidOrientation
orientation_engine = RapidOrientation()
img = cv2.imread('test_images/layout.png')
orientation_res, elapse = orientation_engine(img)
print(orientation_res)
# 返回结果为str类型,有四类:0 | 90 | 180 | 270

3. 版面分析RapidLayout

安装$ pip install rapid-layout

import cv2
from rapid_layout import RapidLayout, VisLayout

# model_type类型参见上表。指定不同model_type时,会自动下载相应模型到安装目录下的。
layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla")

img = cv2.imread('test_images/layout.png')

boxes, scores, class_names, elapse = layout_engine(img)
ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names)
if ploted_img is not None:
    cv2.imwrite("layout_res.png", ploted_img)

4. 文字识别和表格识别rapid_table

from rapid_table import RapidTable, VisTable

# RapidTable类提供model_path参数,可以自行指定上述2个模型,默认是en_ppstructure_mobile_v2_SLANet.onnx
# table_engine = RapidTable(model_path='ch_ppstructure_mobile_v2_SLANet.onnx')
table_engine = RapidTable()
ocr_engine = RapidOCR()
viser = VisTable()

img_path = 'test_images/table.jpg'

ocr_result, _ = ocr_engine(img_path)
table_html_str, table_cell_bboxes, elapse = table_engine(img_path, ocr_result)

5. latex识别rapidLaTexOCR

from rapid_latex_ocr import LatexOCR
model = LatexOCR()
img_path = "tests/test_files/6.png"
with open(img_path, "rb") as f:
    data = f.read()
res, elapse = model(data)

6. 整合版:RapidOCRPDF

# 基于CPU 依赖rapidocr_onnxruntime
pip install rapidocr_pdf[onnxruntime]
# 基于CPU 依赖rapidocr_openvino 更快
pip install rapidocr_pdf[openvino]
# 基于GPU 依赖rapidocr_paddle
pip install rapidocr_pdf[paddle]

使用:

from rapidocr_pdf import PDFExtracter
pdf_extracter = PDFExtracter()
pdf_path = 'tests/test_files/direct_and_image.pdf'
texts = pdf_extracter(pdf_path, force_ocr=False)
print(texts)
相关推荐
m0_7482329213 分钟前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家18 分钟前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室21 分钟前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习33 分钟前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手1 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代1 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新1 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6652 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室3 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王3 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉