在函数中使用 Lambda 表达式
示例
你可以在函数的主体中使用 lambda 表达式。 lambda 表达式可以访问该封闭函数可访问的任何函数或数据成员。 你可以显式或隐式捕获 this 指针,以提供对封闭类的函数和数据成员的访问路径。 Visual Studio 2017 版本 15.3 或更新版本(/std:c++17 及更新版本可用):在原始对象超出范围后,当可能会执行代码的异步或并行操作将使用 lambda 时,按值捕获 this ([*this])。
可以在函数中显式使用 this 指针,如下所示:
// capture "this" by reference
void ApplyScale(const vector<int>& v) const
{
for_each(v.begin(), v.end(),
[this](int n) { cout << n * _scale << endl; });
}
// capture "this" by value (Visual Studio 2017 version 15.3 and later)
void ApplyScale2(const vector<int>& v) const
{
for_each(v.begin(), v.end(),
[*this](int n) { cout << n * _scale << endl; });
}
你也可以隐式捕获 this 指针:
void ApplyScale(const vector<int>& v) const
{
for_each(v.begin(), v.end(),
[=](int n) { cout << n * _scale << endl; });
}
以下示例显示封装小数位数值的 Scale 类。 ApplyScale 函数使用 lambda 表达式打印小数位数值与 vector 对象中的每个元素的乘积。 lambda 表达式隐式捕获 this 指针,以便访问 _scale 成员。
// function_lambda_expression.cpp
// compile with: /EHsc /W4
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
class Scale
{
public:
// The constructor.
explicit Scale(int scale) : _scale(scale) {}
// Prints the product of each element in a vector object
// and the scale value to the console.
void ApplyScale(const vector<int>& v) const
{
for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; });
}
private:
int _scale;
};
int main()
{
vector<int> values;
values.push_back(1);
values.push_back(2);
values.push_back(3);
values.push_back(4);
// Create a Scale object that scales elements by 3 and apply
// it to the vector object. doesn't modify the vector.
Scale s(3);
s.ApplyScale(values);
}
输出为:
3
6
9
12
配合使用 Lambda 表达式和模板
示例
由于 lambda 表达式已类型化,因此你可以将其与 C++ 模板一起使用。 下面的示例显示 negate_all 和 print_all 函数。 negate_all 函数将一元 operator- 应用于 vector 对象中的每个元素。 print_all 函数将 vector 对象中的每个元素打印到控制台。
// template_lambda_expression.cpp
// compile with: /EHsc
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
// Negates each element in the vector object. Assumes signed data type.
template <typename T>
void negate_all(vector<T>& v)
{
for_each(v.begin(), v.end(), [](T& n) { n = -n; });
}
// Prints to the console each element in the vector object.
template <typename T>
void print_all(const vector<T>& v)
{
for_each(v.begin(), v.end(), [](const T& n) { cout << n << endl; });
}
int main()
{
// Create a vector of signed integers with a few elements.
vector<int> v;
v.push_back(34);
v.push_back(-43);
v.push_back(56);
print_all(v);
negate_all(v);
cout << "After negate_all():" << endl;
print_all(v);
}
输出为:
34
-43
56
After negate_all():
-34
43
-56
处理异常
示例
lambda 表达式的主体遵循结构化异常处理 (SEH) 和 C++ 异常处理的原则。 你可以在 lambda 表达式主体中处理引发的异常或将异常处理推迟至封闭范围。 以下示例使用 for_each 函数和 lambda 表达式将一个 vector 对象的值填充到另一个中。 它使用 try/catch 块处理对第一个矢量的无效访问。
// eh_lambda_expression.cpp
// compile with: /EHsc /W4
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
// Create a vector that contains 3 elements.
vector<int> elements(3);
// Create another vector that contains index values.
vector<int> indices(3);
indices[0] = 0;
indices[-1] = 1; // This is not a valid subscript. It will trigger an exception.
indices[2] = 2;
// Use the values from the vector of index values to
// fill the elements vector. This example uses a
// try/catch block to handle invalid access to the
// elements vector.
try
{
for_each(indices.begin(), indices.end(), [&](int index) {
elements.at(index) = index;
});
}
catch (const out_of_range& e)
{
cerr << "Caught '" << e.what() << "'." << endl;
};
}
输出为:
Caught 'invalid vector<T> subscript'.
配合使用 Lambda 表达式和托管类型 (C++/CLI)
示例
lambda 表达式的捕获子句不能包含具有托管类型的变量。 但是,你可以将具有托管类型的实际参数传递到 lambda 表达式的形式参数列表。 以下示例包含一个 lambda 表达式,它通过值捕获局部非托管变量 ch,并采用 System.String 对象作为其参数。
// managed_lambda_expression.cpp
// compile with: /clr
using namespace System;
int main()
{
char ch = '!'; // a local unmanaged variable
// The following lambda expression captures local variables
// by value and takes a managed String object as its parameter.
[=](String ^s) {
Console::WriteLine(s + Convert::ToChar(ch));
}("Hello");
}
输出为:
Hello!
以下公共语言运行时 (CLR) 托管实体中不支持 Lambda:
ref class、ref struct、value class 以及 value struct;
C++ 中的 constexpr lambda 表达式
Visual Studio 2017 版本 15.3 及更高版本 (在 /std:c++17 模式和更高版本中可用):在常量表达式中允许初始化捕获或引入的每个数据成员时,可以将 lambda 表达式声明为 constexpr,或在常量表达式中使用它。
int y = 32;
auto answer = [y]() constexpr
{
int x = 10;
return y + x;
};
constexpr int Increment(int n)
{
return [n] { return n + 1; }();
}
如果 Lambda 结果满足 constexpr 函数的要求,则 Lambda 是隐式的 constexpr:
auto answer = [](int n)
{
return 32 + n;
};
constexpr int response = answer(10);
如果 lambda 是隐式或显式的 constexpr,并且将其转换为函数指针,则生成的函数也是 constexpr:
auto Increment = [](int n)
{
return n + 1;
};
constexpr int(*inc)(int) = Increment;