【大模型LLM第十一篇】微调自动化数据选择方式之MoDS

前言

来自中科院自动化所的paper

MoDS: Model-oriented Data Selection for Instruction Tuning

link:https://arxiv.org/pdf/2311.15653

github:https://github.com/CASIA-LM/MoDS

一、摘要

sft已经成为让LLM遵循用户指令的一种方式。通常,需要使用数十万个数据来微调基础LLM。最近,研究表明少量的高质量指令数据就足够。然而,如何在给定的数据中选择合适的指令数据?

为了解决这个问题,提出了一种面向模型的数据选择(MoDS)方法,该方法基于考虑三个方面的新标准来选择指令数据:质量、覆盖范围和必要性。

首先,利用质量评估模型从原始指令数据集中过滤出高质量子集,然后设计算法进一步从高质量子集中选择具有良好覆盖率的seed instruction dataset。应用seed数据集来微调基础LLM获得初始sft LLM。最后,用一个必要性评估模型来找出初始sft LLM效果较差的sft数据,将这些数据作为下一步改进LLM的必要指令。

从原始指令数据集中得到一个小的高质量、覆盖面广、必要性高的子集。实验结果表明,使用MoDS方法选择的 4,000 个指令对进行微调的模型比使用包含 214k 指令数据的完整原始数据集进行微调的模型表现更好。

二、方法

这个方法主要聚焦于三点:

  • Quality: 数据样本的质量
  • Coverage: 即多样性
  • Necessity: 对模型sft重要且唯一,主要从,大模型能很好的回答,说明模型学习好了,如果不能生成好的回答,说明LLM缺乏这个能力,则这个样本是必要的去提升模型能力。

分为三步骤

  1. Quality Evaluation
  2. Diverse Data Selection for Seed Instructions
  3. Augmented Data Selection.

2.1 Quality Evaluation

直接用一个reward model进行样本质量评分

reward model:reward-model-deberta-

v3-large-v22 (基于DeBERTa架构)

超过某个阈值的数据样本挑出来,当作 high-quality in struction dataset

2.2 Diverse Data Selection for Seed

依然采用k-center-greedy聚类来得到subset

讲解和代码:https://zhuanlan.zhihu.com/p/711917766

最终得到的样本集称为:seed instruction dataset

2.3 Augmented Data Selection

利用seed instruction dataset训练一个sft model.

用这个sft model对high-quality in struction dataset进行推理,之后用一个review model对生成的response和instruction计算一个review score,采用的模型依然是reward-model-deberta-v3-large-v22 (基于DeBERTa架构)

如果review score低于某个分数,则代表模型生成的response不是那么好,收集全部的低review score的样本,之后再用一次K-center greedy选取一个子集,作为加强数据集。

相当于做了一个high-quality in struction dataset选多样性subset,之后再通过预测不好的样本集,再补充一部分增强模型能力。

最终用这两个subset组成最终的数据集进行训练

三、实验

还做了一个 k-center和random采样的对比实验,这种实验基本上在用k-center的情况下都会对比一下:

相关推荐
峰顶听歌的鲸鱼1 小时前
Kubernetes介绍和部署
运维·笔记·云原生·容器·kubernetes·学习方法
信创天地2 小时前
自动化运维利器赋能信创:Ansible与SaltStack在国产系统的部署与批量管理实战
运维·自动化·ansible
东城绝神2 小时前
《Linux运维总结:基于ARM64+X86_64架构使用docker-compose一键离线部署MySQL8.0.43 NDB Cluster容器版集群》
linux·运维·mysql·架构·高可用·ndb cluster
creator_Li2 小时前
即时通讯项目--(1)环境搭建
linux·运维·ubuntu
Ka1Yan3 小时前
Docker:基本概念与快速入门
运维·docker·容器
文静小土豆4 小时前
Rocky Linux 二进制 安装K8S-1.35.0高可用集群
linux·运维·kubernetes
北京耐用通信4 小时前
耐达讯自动化Profibus总线光纤中继器:光伏逆变器通讯的“稳定纽带”
人工智能·物联网·网络协议·自动化·信息与通信
小技工丨4 小时前
华为TaiShan 200 2280 ARM服务器虚拟化部署完整指南
运维·服务器·arm开发
403240736 小时前
[Jetson/Ubuntu 22.04] 解决挂载 exFAT 硬盘报错 “unknown filesystem type“ 及只读权限问题的终极指南
linux·运维·ubuntu
零意@6 小时前
debian如何把新编译的内核镜像替换原来的内核
运维·debian·更新内核版本·linux内核版本更新·debian更新内核