OpenAI Chat Completion API 申请及使用

OpenAI Chat Completion API 申请及使用

OpenAI ChatGPT 是一款非常强大的 AI 对话系统,只要输入提示词,就能在短短几秒内生成流畅自然的回复。ChatGPT 以其出色的语言理解和生成能力在业界独树一帜,如今,ChatGPT 早已在各个行业和领域广泛应用,其影响力愈发显著。无论是日常对话、创意写作,还是专业咨询、代码编程,ChatGPT 都能提供令人惊叹的智能协助,极大地提高了人类的工作效率和创造力。

本文档主要介绍 OpenAI Chat Completion API 操作的使用流程,利用它我们可以轻松使用官方 OpenAI ChatGPT 的对话功能。

申请流程

要使用 OpenAI Chat Completion API,首先可以到 OpenAI Chat Completion API 页面点击「Acquire」按钮,获取请求所需要的凭证:

如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

在首次申请时会有免费额度赠送,可以免费使用该 API。

基本使用

接下来就可以在界面上填写对应的内容,如图所示:

在第一次使用该接口时,我们至少需要填写三个内容,一个是 authorization,直接在下拉列表里面选择即可。另一个参数是 modelmodel 就是我们选择使用 OpenAI ChatGPT 官网模型类别,这里我们主要有 20 种模型,详情可以看我们提供的模型。最后一个参数是messagesmessages是我们输入的提问词数组,它是一个数组,表示可以同时上传多个提问词,每个提问词包含了 rolecontent,其中 role 表示提问者的角色,我们提供了三种身份,分别为 userassistantsystem 。另一个 content 就是我们提问的具体内容。

同时您可以注意到右侧有对应的调用代码生成,您可以复制代码直接运行,也可以直接点击「Try」按钮进行测试。

调用之后,我们发现返回结果如下:

json 复制代码
{
  "id": "chatcmpl-9k1idCCQuteN6Zu7Kv35TrG6DHKNt",
  "object": "chat.completion.chunk",
  "created": 1720756723,
  "model": "gpt-4",
  "system_fingerprint": "fp_abc28019ad",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Hello! How can I assist you today?"
      },
      "finish_reason": "stop"
    }
  ],
  "recipient": "all",
  "usage": {
    "prompt_tokens": 8,
    "completion_tokens": 9,
    "total_tokens": 17
  }
}

返回结果一共有多个字段,介绍如下:

  • id,生成此次对话任务的 ID,用于唯一标识此次对话任务。
  • model ,选择的 OpenAI ChatGPT 官网模型。
  • choices,ChatGPT 针对提问词给于的回答信息。
  • usage :针对本次问答对 token 的统计信息。

其中 choices 是包含了 ChatGPT 的回答信息,它里面的 choices 是 ChatGPT,可以发现如图所示。

可以看到,choices 里面的 content 字段包含了 ChatGPT 回复的具体内容。

流式响应

该接口也支持流式响应,这对网页对接十分有用,可以让网页实现逐字显示效果。

如果想流式返回响应,可以更改请求头里面的 stream 参数,修改为 true

修改如图所示,不过调用代码需要有对应的更改才能支持流式响应。

stream 修改为 true 之后,API 将逐行返回对应的 JSON 数据,在代码层面我们需要做相应的修改来获得逐行的结果。

Python 样例调用代码:

python 复制代码
import requests

url = "https://api.acedata.cloud/openai/chat/completions"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-4",
    "messages": [{"role":"user","content":"hello"}],
    "stream": True
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

输出效果如下:

json 复制代码
data: {"choices": [{"delta": {"role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": "Hi", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " there", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": "!", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " How", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " can", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " I", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " assist", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " you", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": " today", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"content": "?", "role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"role": "assistant"}, "index": 0}], "created": 1721007348, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: {"choices": [{"delta": {"role": "assistant"}, "finish_reason": "stop", "index": 0}], "created": 1721007349, "id": "chatcmpl-YzczYjVhNjhjMzMwNDQ5MDkyNGYzOGZjZGE1ZGQ5OGU", "model": "gpt-4", "object": "chat.completion.chunk", "recipient": "all"}

data: [DONE]

可以看到,响应里面有许多 datadata 里面的 choices 即为最新的回答内容,与上文介绍的内容一致。choices 是新增的回答内容,您可以根据结果来对接到您的系统中。同时流式响应的结束是根据 data 的内容来判断的,如果内容为 [DONE],则表示流式响应回答已经全部结束。返回的 data 结果一共有多个字段,介绍如下:

  • id,生成此次对话任务的 ID,用于唯一标识此次对话任务。
  • model ,选择的 OpenAI ChatGPT 官网模型。
  • choices,ChatGPT 针对提问词给于的回答信息。

JavaScript 也是支持的,比如 Node.js 的流式调用代码如下:

javascript 复制代码
const options = {
  method: "post",
  headers: {
    accept: "application/json",
    authorization: "Bearer {token}",
    "content-type": "application/json",
  },
  body: JSON.stringify({
    model: "gpt-4",
    messages: [{ role: "user", content: "hello" }],
    stream: true,
  }),
};

fetch("https://api.acedata.cloud/openai/chat/completions", options)
  .then((response) => response.json())
  .then((response) => console.log(response))
  .catch((err) => console.error(err));

Java 样例代码:

java 复制代码
JSONObject jsonObject = new JSONObject();
jsonObject.put("model", "gpt-4");
jsonObject.put("messages", [{"role":"user","content":"hello"}]);
jsonObject.put("stream", true);
MediaType mediaType = "application/json; charset=utf-8".toMediaType();
RequestBody body = jsonObject.toString().toRequestBody(mediaType);
Request request = new Request.Builder()
  .url("https://api.acedata.cloud/openai/chat/completions")
  .post(body)
  .addHeader("accept", "application/json")
  .addHeader("authorization", "Bearer {token}")
  .addHeader("content-type", "application/json")
  .build();

OkHttpClient client = new OkHttpClient();
Response response = client.newCall(request).execute();
System.out.print(response.body!!.string())

其他语言可以另外自行改写,原理都是一样的。

多轮对话

如果您想要对接多轮对话功能,需要对 messages 字段上传多个提问词,多个提问词的具体示例如下图所示:

Python 样例调用代码:

python 复制代码
import requests

url = "https://api.acedata.cloud/openai/chat/completions"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-4",
    "messages": [{"role":"user","content":"Hello"},{"role":"assistant","content":"Hi! How can I assist you today?"},{"role":"user","content":"What I say just now?"}]
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

通过上传多个提问词,就可以轻松实现多轮对话,可以得到如下回答:

json 复制代码
{
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "You said, \"Hello.\""
      },
      "finish_reason": "stop"
    }
  ],
  "created": 1721323012,
  "id": "chatcmpl-NWZmOTA5MDlkZjBjNDRjNGEwMzRjYzA5NmM1MzQwMWY",
  "model": "gpt-4",
  "object": "chat.completion.chunk",
  "recipient": "all",
  "usage": {
    "prompt_tokens": 31,
    "completion_tokens": 6,
    "total_tokens": 37
  }
}

可以看到,choices 包含的信息与基本使用的内容是一致的,这个包含了 ChatGPT 针对多个对话进行回复的具体内容,这样就可以根据多个对话内容来回答对应的问题了。

对接 OpenAI-Python

OpenAI Chat Completion API 服务的上游是官方的 OpenAI 服务,具体可查看官方 OpenAI-Python,本文将简要介绍如何使用官方提供的服务。

  1. 首先需要搭建本地 Python 环境,此过程可谷歌搜索一下。
  2. 下载安装开发环境,比如安装 VSCode 编辑器。
  3. 配置 OpenAI 环境变量。
  • 在项目文件夹里,创建一个名为 .env 的文件,并保存
  • .env 文件内容:
json 复制代码
OPENAI_API_KEY="sk-xxx"
OPENAI_BASE_URL="https://api.acedata.cloud/openai"  # 再次提醒:如果你使用官网OpenAI的key,不要用这个地址。

sk-xxx 使用自己的 key 替换。OPENAI_BASE_URL 是访问 OpenAI 的代理接口。

  1. 安装项目依赖的包
shell 复制代码
pip install openai

Mac OS 中命令为:

shell 复制代码
pip3 install openai
  1. 创建示例源代码文件

假设我们创建了一个示例代码 index.py ,具体内容如下:

python 复制代码
import os
from openai import OpenAI


client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

response = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "hello",
        }
    ],
    model="gpt-4",
)

print(response.text)

联网模型

gpt-3.5-browsing 和 gpt-4-browsing 模型与其它模型不同,它可以根据提问词来进行联网搜索,并且将联网搜索的结果进行适当的调整返回给你,本文将通过一个具体示例来演示联网功能,接下来就可以在 OpenAI Chat Completion API 界面上填写对应的内容,如图所示:

同时您可以注意到右侧有对应的调用代码生成,您可以复制代码直接运行,也可以直接点击「Try」按钮进行测试。

调用之后,我们发现返回结果如下:

json 复制代码
{
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "For the latest news in China today, you can check major news websites such as:\n\n- [BBC News China](https://www.bbc.com/news/world/asia/china)\n- [CNN China News](https://edition.cnn.com/china)\n- [Reuters China](https://www.reuters.com/news/archive/china-news)\n\nThese sources will have up-to-date information on current events in China."
      },
      "finish_reason": "stop"
    }
  ],
  "created": 1721009347,
  "id": "chatcmpl-YzA0M2RjZDVkYThlNDkxNTkzOThmZWQ4OGMzNzdhNzA",
  "model": "gpt-4-browsing",
  "object": "chat.completion.chunk",
  "recipient": "all",
  "usage": {
    "prompt_tokens": 325,
    "completion_tokens": 82,
    "total_tokens": 407
  }
}

可以看到,choices 里面的回答信息是根据联网查询后得到的,并且也给出了相关的链接,choices 里面的回答信息是要通过 markdown 语法进行渲染,这样才能获得最佳的体验,最后这也体现出我们模型的联网功能的强大优势。

视觉模型

gpt-4o 是 OpenAI 开发的多模态大型语言模型,它在 GPT-4 的基础上增加了视觉理解能力。这个模型可以同时处理文本和图像输入,实现了跨模态的理解和生成。

使用 gpt-4o 模型的文本处理是与上文的基本使用内容一致的,下面将简要介绍一下如果使用模型的图像处理能力。

使用 gpt-4o 模型的图像处理能力主要是通过在原有的 content 内容基础上添加一个 type 字段,通过该字段可以知道上传的是文本还是图片,从而使用 gpt-4o 模型的图像处理能力,下面主要讲述采用 Curl 和 Python 俩种方式来调用该功能。

python 复制代码
import requests

url = "https://api.acedata.cloud/openai/chat/completions"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-4o",
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text", "text": "What's in this image?"
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
                    }
                },
            ],
        }
    ]
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

然后可以得到下面的结果,结果里面的字段信息是与上文一致的,具体的如下:

json 复制代码
{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "gpt-4-vision-preview",
  "system_fingerprint": "fp_44709d6fcb",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "\n\nThis image shows a wooden boardwalk extending through a lush green marshland."
      },
      "logprobs": null,
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 9,
    "completion_tokens": 12,
    "total_tokens": 21
  }
}

可以看到回答的内容是基于图片进行回答的,因此通过上述俩种方式可以轻松使用 gpt-4-vision 模型的文本和图像处理能力。

除了,gpt-4o,还有一个更低成本的模型,叫做 gpt-4o-mini。gpt-4o-mini 是 OpenAI 开发的最新一代大型语言模型,它不仅响应速度快,同时价格也更便宜,也支持多模态。vision 功能的使用可参考上文 gpt-4o 模型的使用的内容。

错误处理

在调用 API 时,如果遇到错误,API 会返回相应的错误代码和信息。例如:

  • 400 token_mismatched:Bad request, possibly due to missing or invalid parameters.
  • 400 api_not_implemented:Bad request, possibly due to missing or invalid parameters.
  • 401 invalid_token:Unauthorized, invalid or missing authorization token.
  • 429 too_many_requests:Too many requests, you have exceeded the rate limit.
  • 500 api_error:Internal server error, something went wrong on the server.

错误响应示例

{
  "success": false,
  "error": {
    "code": "api_error",
    "message": "fetch failed"
  },
  "trace_id": "2cf86e86-22a4-46e1-ac2f-032c0f2a4e89"
}

结论

通过本文档,您已经了解了如何使用 OpenAI Chat Completion API 轻松实现官方 OpenAI ChatGPT 的对话功能。希望本文档能帮助您更好地对接和使用该 API。如有任何问题,请随时联系我们的技术支持团队。

相关推荐
学术头条21 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典22 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui25 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力30 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_2 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141653 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141653 小时前
Ascend C的编程模型
人工智能