机器人末端阻抗控制Simulink仿真

机器人末端阻抗控制是一种重要的机器人控制策略,它主要用于调节机器人末端执行器与环境之间的动态关系,以保证机器人在适当的柔顺性下进行轨迹跟踪或与环境交互。在使用Simulink进行机器人末端阻抗控制仿真时,主要步骤可以归纳如下:

1. 定义控制目标

  • 确定机器人末端执行器需要达到的位置、速度、加速度等目标。
  • 明确机器人在与环境交互时所需的柔顺性水平。

2. 建立机器人模型

  • 使用Simulink或Simscape等MATLAB工具箱建立机器人的动态模型。
  • 模型应包括机器人的关节、连杆、末端执行器等部分,并考虑其动力学特性,如质量、惯性、摩擦等。

3. 设计阻抗控制算法

  • 阻抗控制算法通常包括位置控制和力控制两部分,旨在调节机器人末端执行器与环境之间的位置和力关系。
  • 常见的阻抗控制模型可以表示为:F=M(x¨d−x¨)+B(x˙d−x˙)+K(xd−x),其中F是末端执行器与环境之间的相互作用力,M、B、K分别为质量、阻尼和刚度系数,xd和x分别为期望位置和实际位置,x˙d和x˙分别为期望速度和实际速度,x¨d和x¨分别为期望加速度和实际加速度。

4. 在Simulink中搭建仿真模型

  • 利用Simulink的模块库搭建阻抗控制仿真模型。
  • 模型应包括感知模块(用于获取机器人状态和环境信息)、控制模块(用于根据感知信息和目标要求计算控制指令)和执行模块(用于将控制指令转换为机器人关节的驱动信号)。

5. 设置仿真参数

  • 设置仿真时间、步长等基本参数。
  • 根据机器人模型和控制算法的要求,设置阻抗控制参数(如M、B、K)和其他相关参数。

6. 运行仿真并分析结果

  • 运行仿真模型,观察机器人末端执行器的运动轨迹和与环境之间的相互作用力。
  • 分析仿真结果,评估阻抗控制算法的性能和机器人的柔顺性。

首先实现一个简单的点到点末端运动轨迹生成。

相关推荐
中國龍在廣州21 小时前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
数据与后端架构提升之路21 小时前
RT-2:Google DeepMind的机器人革命——如何让AI从网页知识中学会操控现实世界
机器人·视觉语言动作模型·rt-2模型·google deepmind·链式思维推理
攻城狮7号21 小时前
小米具身大模型 MiMo-Embodied 发布并全面开源:统一机器人与自动驾驶
人工智能·机器人·自动驾驶·开源大模型·mimo-embodied·小米具身大模型
shayudiandian1 天前
ChatGPT风格对话机器人搭建教程
人工智能·chatgpt·机器人
robot_learner1 天前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
IT观测1 天前
手部动作捕捉技术系统推荐:机器人灵巧操作的革命
机器人
m0_650108242 天前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
J_Xiong01172 天前
【VLNs篇】17:NaVid:基于视频的VLM规划视觉语言导航的下一步
人工智能·机器人
ModestCoder_2 天前
PPO-clip算法在Gymnasium的Pendulum环境实现
人工智能·算法·机器人·具身智能
AiTEN_Robot3 天前
技术赋能降本:机器人叉车在物流场景的成本优化实践
机器人·自动化·制造