机器人末端阻抗控制Simulink仿真

机器人末端阻抗控制是一种重要的机器人控制策略,它主要用于调节机器人末端执行器与环境之间的动态关系,以保证机器人在适当的柔顺性下进行轨迹跟踪或与环境交互。在使用Simulink进行机器人末端阻抗控制仿真时,主要步骤可以归纳如下:

1. 定义控制目标

  • 确定机器人末端执行器需要达到的位置、速度、加速度等目标。
  • 明确机器人在与环境交互时所需的柔顺性水平。

2. 建立机器人模型

  • 使用Simulink或Simscape等MATLAB工具箱建立机器人的动态模型。
  • 模型应包括机器人的关节、连杆、末端执行器等部分,并考虑其动力学特性,如质量、惯性、摩擦等。

3. 设计阻抗控制算法

  • 阻抗控制算法通常包括位置控制和力控制两部分,旨在调节机器人末端执行器与环境之间的位置和力关系。
  • 常见的阻抗控制模型可以表示为:F=M(x¨d−x¨)+B(x˙d−x˙)+K(xd−x),其中F是末端执行器与环境之间的相互作用力,M、B、K分别为质量、阻尼和刚度系数,xd和x分别为期望位置和实际位置,x˙d和x˙分别为期望速度和实际速度,x¨d和x¨分别为期望加速度和实际加速度。

4. 在Simulink中搭建仿真模型

  • 利用Simulink的模块库搭建阻抗控制仿真模型。
  • 模型应包括感知模块(用于获取机器人状态和环境信息)、控制模块(用于根据感知信息和目标要求计算控制指令)和执行模块(用于将控制指令转换为机器人关节的驱动信号)。

5. 设置仿真参数

  • 设置仿真时间、步长等基本参数。
  • 根据机器人模型和控制算法的要求,设置阻抗控制参数(如M、B、K)和其他相关参数。

6. 运行仿真并分析结果

  • 运行仿真模型,观察机器人末端执行器的运动轨迹和与环境之间的相互作用力。
  • 分析仿真结果,评估阻抗控制算法的性能和机器人的柔顺性。

首先实现一个简单的点到点末端运动轨迹生成。

相关推荐
资源开发与学习1 天前
机器人运动规划源码解析
机器人
hi0_63 天前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
大视码垛机3 天前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造
WWZZ20253 天前
视觉SLAM第10讲:后端2(滑动窗口与位子图优化)
c++·人工智能·后端·算法·ubuntu·机器人·自动驾驶
deephub3 天前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
武子康3 天前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记3 天前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人
shuidaoyuxing3 天前
机器人防爆的详细讲解
机器人
物联网软硬件开发-轨物科技4 天前
【轨物方案】赋能绿色能源新纪元:轨物科技发布光伏清洁机器人智能控制与运维解决方案
科技·机器人·能源
尤齐4 天前
《机器人抓取:从经典到现代的综述》内容的提取和凝练:
机器人