机器人末端阻抗控制Simulink仿真

机器人末端阻抗控制是一种重要的机器人控制策略,它主要用于调节机器人末端执行器与环境之间的动态关系,以保证机器人在适当的柔顺性下进行轨迹跟踪或与环境交互。在使用Simulink进行机器人末端阻抗控制仿真时,主要步骤可以归纳如下:

1. 定义控制目标

  • 确定机器人末端执行器需要达到的位置、速度、加速度等目标。
  • 明确机器人在与环境交互时所需的柔顺性水平。

2. 建立机器人模型

  • 使用Simulink或Simscape等MATLAB工具箱建立机器人的动态模型。
  • 模型应包括机器人的关节、连杆、末端执行器等部分,并考虑其动力学特性,如质量、惯性、摩擦等。

3. 设计阻抗控制算法

  • 阻抗控制算法通常包括位置控制和力控制两部分,旨在调节机器人末端执行器与环境之间的位置和力关系。
  • 常见的阻抗控制模型可以表示为:F=M(x¨d−x¨)+B(x˙d−x˙)+K(xd−x),其中F是末端执行器与环境之间的相互作用力,M、B、K分别为质量、阻尼和刚度系数,xd和x分别为期望位置和实际位置,x˙d和x˙分别为期望速度和实际速度,x¨d和x¨分别为期望加速度和实际加速度。

4. 在Simulink中搭建仿真模型

  • 利用Simulink的模块库搭建阻抗控制仿真模型。
  • 模型应包括感知模块(用于获取机器人状态和环境信息)、控制模块(用于根据感知信息和目标要求计算控制指令)和执行模块(用于将控制指令转换为机器人关节的驱动信号)。

5. 设置仿真参数

  • 设置仿真时间、步长等基本参数。
  • 根据机器人模型和控制算法的要求,设置阻抗控制参数(如M、B、K)和其他相关参数。

6. 运行仿真并分析结果

  • 运行仿真模型,观察机器人末端执行器的运动轨迹和与环境之间的相互作用力。
  • 分析仿真结果,评估阻抗控制算法的性能和机器人的柔顺性。

首先实现一个简单的点到点末端运动轨迹生成。

相关推荐
硅谷秋水4 小时前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
扫地的小何尚4 小时前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
cnbestec12 小时前
UR机器人解锁关节扭矩控制:利用英伟达Isaac Lab框架,推动装配自动化的Sim2Real迁移
机器人·nvidia·协作机器人·优傲机器人·关节扭矩控制·ur机器人
刘延林.12 小时前
ROS 2安装 slam_toolbox
人工智能·机器人·自动驾驶
lingling00916 小时前
智驱未来:迁移科技3D视觉系统重塑复合机器人产业生态
科技·3d·机器人
nenchoumi311919 小时前
UE5 学习系列(五)导入贴图资产
学习·游戏·ue5·机器人
DFminer1 天前
【仿生机器人】建模—— 图生3D 的几个办法
人工智能·安全·机器人
硅谷秋水1 天前
TASTE-Rob:推进面向任务的手-目标交互视频生成,实现可通用的机器人操作
人工智能·深度学习·机器学习·计算机视觉·机器人·交互
Mountain and sea1 天前
ABB RobotStudio 和 S7-PLCSIM Advanced V5.0 搭建虚拟通信环境,实现 PLC 对机器人布尔量、数字量和模拟量的控制。
网络·机器人
SY师弟1 天前
台湾TEMI协会竞赛——2、足球机器人组装教学
c语言·单片机·嵌入式硬件·机器人·嵌入式·台湾temi协会