基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)

简介

梯度提升(Gradient Boosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。

梯度提升回归的工作原理

在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:

  1. 初始化模型:选择一个初始预测器 h0(x),计算该预测器的预测值。
  2. 计算残差:计算每个样本的残差,残差是实际值与当前预测值之间的差异。
  3. 训练新预测器:用计算得到的残差作为目标,训练一个新的预测器 h1(x)。
  4. 更新模型:将新预测器的预测结果加到现有模型中。
  5. 重复步骤:重复上述步骤,逐步添加更多的预测器,以减少残差。

目标函数与残差

在回归问题中,我们希望通过添加新的预测器来最小化残差。具体来说,对于每个样本 (x(i),y(i)),我们计算预测器的残差:

我们希望新的预测器 h1(x)能够进一步减少这个残差:

通过这样的方式,我们可以不断改进模型的预测能力。

梯度提升回归的损失函数

在回归中,我们通常使用均方误差(MSE)作为损失函数:

我们的目标是通过每一步最小化残差,从而最小化整体损失函数。

代码示例

下面的代码示例展示了如何使用sklearn中的GradientBoostingRegressor实现梯度提升回归:

python 复制代码
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error

# 生成数据集
X, y = make_regression(n_samples=500, noise=0.2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建和训练模型
gbr = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
gbr.fit(X_train, y_train)

# 进行预测和评估
y_pred = gbr.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差: {mse:.2f}")

结语

与之前讨论的决策树、Bagging、随机森林相比,梯度提升回归通过逐步优化模型的残差来提升预测性能。决策树和Bagging方法通过集成多个模型来减少方差,而随机森林进一步通过随机特征选择来去相关性。梯度提升则通过序列化的方式不断改进模型,强调对残差的逐步修正。每种方法都有其独特的优势和适用场景,选择合适的模型可以显著提高预测的准确性。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

相关推荐
三体世界1 天前
测试用例全解析:从入门到精通(1)
linux·c语言·c++·python·功能测试·测试用例·测试覆盖率
Python私教1 天前
Django全栈班v1.04 Python基础语法 20250912 下午
后端·python·django
xchenhao1 天前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao1 天前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
这里有鱼汤1 天前
发现一个高性能回测框架,Python + Rust,比 backtrader 快 250 倍?小团队必备!
后端·python
☼←安于亥时→❦1 天前
数据分析之Pandas入门小结
python·pandas
deephub1 天前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
带娃的IT创业者1 天前
《Python Web部署应知应会》No3:Flask网站的性能优化和实时监测深度实战
前端·python·flask
赴3351 天前
图像拼接案例,抠图案例
人工智能·python·计算机视觉
明月照山海-1 天前
机器学习周报十三
人工智能·机器学习·概率论