深度学习_数据读取到model模型存储

概要

应用场景:用户流失

本文将介绍模型调用预测的步骤,这里深度学习模型使用的是自定义的deepfm,并用机器学习lgb做比较

代码

导包

python 复制代码
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
from collections import defaultdict  
from scipy import stats
from scipy import signal
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, f1_score
from scipy.spatial.distance import cosine

import lightgbm as lgb

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler
from tensorflow.keras.layers import *
import tensorflow.keras.backend as K
import tensorflow as tf
from tensorflow.keras.models import Model

import os,gc,re,warnings,sys,math
warnings.filterwarnings("ignore")

pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)

读取数据

python 复制代码
data = pd.read_csv('df_03m.csv')

区分稀疏及类别变量

python 复制代码
sparse_cols = ['shop_id','sex']
dense_cols  = [c for c in data.columns if c not in sparse_cols + ['customer_id', 'flag', 'duartion_is_lm']]

dense特征处理

python 复制代码
def process_dense_feats(data, cols):
    d = data.copy()
    for f in cols:
        d[f] = d[f].fillna(0)
        ss=StandardScaler()
        d[f] = ss.fit_transform(d[[f]])
    return d

data = process_dense_feats(data, dense_cols)

sparse稀疏特征处理

python 复制代码
def process_sparse_feats(data, cols):
    d = data.copy()
    for f in cols:
        d[f] = d[f].fillna('-1').astype(str)
        label_encoder = LabelEncoder()
        d[f] = label_encoder.fit_transform(d[f])
    return d

data = process_sparse_feats(data, sparse_cols)

切分训练及测试集

python 复制代码
X_train, X_test, _, _ = train_test_split(data, data, test_size=0.3, random_state=2024)

y_train = X_train['flag']
y_test = X_test['flag']

X_train1 = X_train.drop(['customer_id', 'flag', 'duartion_is_lm'], axis = 1)
X_test1 = X_test.drop(['customer_id', 'flag', 'duartion_is_lm'], axis = 1)

模型定义

python 复制代码
def deepfm_model(sparse_columns, dense_columns, train, test):
    
    ####### sparse features ##########
    sparse_input = []
    lr_embedding = []
    fm_embedding = []
    for col in sparse_columns:
        ## lr_embedding
        _input = Input(shape=(1,))
        sparse_input.append(_input)
        
        nums = pd.concat((train[col], test[col])).nunique() + 1
        embed = Flatten()(Embedding(nums, 1, embeddings_regularizer=tf.keras.regularizers.l2(0.5))(_input))
        lr_embedding.append(embed)
        
        ## fm_embedding
        embed = Embedding(nums, 10, input_length=1, embeddings_regularizer=tf.keras.regularizers.l2(0.5))(_input)
        reshape = Reshape((10,))(embed)
        fm_embedding.append(reshape)
    
    ####### fm layer ##########
    fm_square = Lambda(lambda x: K.square(x))(Add()(fm_embedding)) # 
    square_fm = Add()([Lambda(lambda x:K.square(x))(embed)
                     for embed in fm_embedding])
    snd_order_sparse_layer = subtract([fm_square, square_fm])
    snd_order_sparse_layer  = Lambda(lambda x: x * 0.5)(snd_order_sparse_layer)
    
    ####### dense features ##########
    dense_input = []
    for col in dense_columns:
        _input = Input(shape=(1,))
        dense_input.append(_input)
    concat_dense_input = concatenate(dense_input)
    fst_order_dense_layer = Dense(4, activation='relu')(concat_dense_input)
    
#     #######  NFM  ##########
#     inner_product = []
#     for i in range(field_cnt):
#         for j in range(i + 1, field_cnt):
#             tmp = dot([fm_embedding[i], fm_embedding[j]], axes=1)
#             # tmp = multiply([fm_embedding[i], fm_embedding[j]])
#             inner_product.append(tmp)
#     add_inner_product = add(inner_product)
    
    
#     #######  PNN  ##########
#     for i in range(field_cnt):
#         for j in range(i+1,field_cnt):
#             tmp = dot([lr_embedding[i],lr_embedding[j]],axes=1)
#             product_list.append(temp)
#     inp = concatenate(lr_embedding+product_list)
    
    ####### linear concat ##########
    fst_order_sparse_layer = concatenate(lr_embedding)
    linear_part = concatenate([fst_order_dense_layer, fst_order_sparse_layer])
    
#     #######  DCN  ##########
#     linear_part = concatenate([fst_order_dense_layer, fst_order_sparse_layer])
#     x0 = linear_part
#     xl = x0
#     for i in range(3):
#         embed_dim = xl.shape[-1]
#         w = tf.Variable(tf.random.truncated_normal(shape=(embed_dim,), stddev=0.01))
#         b = tf.Variable(tf.zeros(shape=(embed_dim,)))
#         x_lw = tf.tensordot(tf.reshape(xl, [-1, 1, embed_dim]), w, axes=1)
#         cross = x0 * x_lw 
#         xl = cross + b + xl
    
    #######dnn layer##########
    concat_fm_embedding = concatenate(fm_embedding, axis=-1) # (None, 10*26)
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(128)(concat_fm_embedding))))
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(64)(fc_layer))))
    fc_layer = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(Dense(32)(fc_layer))))
    
    ######## output layer ##########
    output_layer = concatenate([linear_part, snd_order_sparse_layer, fc_layer]) # (None, )
    output_layer = Dense(1, activation='sigmoid')(output_layer)
    
    model = Model(inputs=sparse_input+dense_input, outputs=output_layer)
    
    return model
python 复制代码
model = deepfm_model(sparse_cols, dense_cols, X_train1, X_test1)
model.compile(optimizer="adam", 
              loss="binary_crossentropy", 
              metrics=["binary_crossentropy", tf.keras.metrics.AUC(name='auc')])
python 复制代码
train_sparse_x = [X_train1[f].values for f in sparse_cols]
train_dense_x = [X_train1[f].values for f in dense_cols]
train_label = [y_train.values]

test_sparse_x = [X_test1[f].values for f in sparse_cols]
test_dense_x = [X_test1[f].values for f in dense_cols]
test_label = [y_test.values]
python 复制代码
test_sparse_x

训练模型

python 复制代码
from keras.callbacks import *
# 回调函数
file_path = "deepfm_model_data.h5"
earlystopping = EarlyStopping(monitor="val_loss", patience=3)
checkpoint = ModelCheckpoint(
    file_path, save_weights_only=True, verbose=1, save_best_only=True)
callbacks_list = [earlystopping, checkpoint]

hist = model.fit(train_sparse_x+train_dense_x, 
                  train_label,
                  batch_size=4096,
                  epochs=20,
                  validation_data=(test_sparse_x+test_dense_x, test_label),
                  callbacks=callbacks_list,
                  shuffle=False)

模型存储

python 复制代码
model.save('deepfm_model.h5')
loaded_model = tf.keras.models.load_model('deepfm_model.h5')
python 复制代码
print("np.min(hist.history['val_loss']):", np.min(hist.history['val_loss']))
#np.min(hist.history['val_loss']):0.19
python 复制代码
print("np.max(hist.history['val_auc']):", np.max(hist.history['val_auc']))
#np.max(hist.history['val_auc']):0.95

模型预测

python 复制代码
deepfm_prob = model.predict(test_sparse_x+test_dense_x, batch_size=4096*4, verbose=1)
deepfm_prob.shape
python 复制代码
deepfm_prob
python 复制代码
df_submit          = pd.DataFrame()
df_submit          = X_test
df_submit['prob']  = deepfm_prob 
df_submit.head(3)
python 复制代码
df_submit.shape
python 复制代码
df_submit['y_pre'] = ''
df_submit['y_pre'].loc[(df_submit['prob']>=0.5)] = 1
df_submit['y_pre'].loc[(df_submit['prob']<0.5)]  = 0
df_submit.head(3)
python 复制代码
df_submit = df_submit.reset_index()
df_submit.head(1)
python 复制代码
df_submit = df_submit.drop('index', axis = 1)
df_submit.head(1)
python 复制代码
df_submit.groupby(['flag', 'y_pre'])['customer_id'].count()

根据上述结果打印召回及精准

python 复制代码
precision = 
recall  = 

查看lgb结果做比较

python 复制代码
from lightgbm import LGBMClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import f1_score, confusion_matrix, recall_score, precision_score



params = {'n_estimators': 1500, 
            'learning_rate': 0.1,
            'max_depth': 15,
            'metric': 'auc',
            'verbose': -1, 
            'seed: 2023,
            'n_jobs':-1

model=LGBMClarsifier(**params) 
model.fit(X_train, y_train,
            eval_set=[(X_train1, y_train), (X_test1, y_test)], 
            eval_metric = 'auc', 
            verbose=50,
            early_stopping_rounds = 100)
y_pred = model.predict(X_test1, num_iteration = model.best_iteration_)


          
          

y_pred = model.predict(X_test1)
y_pred_proba = model.predict_proba(X_test1)
lgb_acc = model.score(X_test1, y_test) * 100
lgb_recall = recall_score(y_test, y_pred) * 100
lgb_precision = precision_score(y_test, y_pred) * 100 I 
lgb_f1 = f1_score(y_test, y_pred, pos_label=1) * 100
print("1gb 准确率:{:.2f}%".format(lgb_acc))
print("lgb 召回率:{:.2f}%".fornat(lgb_recall))
print("lgb 精准率:{:.2f}%".format(lgb_precision))
print("lgb F1分数:{:.2f}%".format(lgb_f1))


#from sklearn.metrics import classification_report
#printf(classification_report(y_test, y_pred))

# 混淆矩阵
plt.title("混淆矩阵", fontsize=21)
data_confusion_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(data_confusion_matrix, annot=True, cmap='Blues', fmt='d', cbar='False', annot_kws={'size': 28})
plt.xlabel('Predicted label') 
plt.ylabel('True label')


from sklearn.metrics import roc_curve, auc
probs = model.predict_proba(X_test1)
preds = probs[:, 1]
fpr, tpr, threshold = roc_curve(y_test, preds)
# 绘制ROC曲线
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive(TPR)')
plt.xlabel('False Positive(FPR)')
plt.title('ROC')
plt.legend(loc='lower right')
plt.show()

参考资料:自己琢磨将资料整合

相关推荐
Ki13818 分钟前
我的AI学习小结:从入门到放弃
人工智能·学习
迪三达10 分钟前
智能体交易员 - AI-Trader
人工智能
dog25017 分钟前
LLM(大语言模型)和高尔顿板
人工智能·语言模型·自然语言处理·高尔顿板
LaughingZhu26 分钟前
Product Hunt 每日热榜 | 2025-12-13
人工智能·经验分享·神经网络·搜索引擎·产品运营
Hello娃的26 分钟前
【量子力学】Hohenberg-Kohn 定理
人工智能·算法
学好statistics和DS33 分钟前
机器学习中所有可以调整的超参数(考试/自己调参用)
人工智能·机器学习
老马啸西风34 分钟前
成熟企业级技术平台 MVE-010-IGA(Identity Governance & Administration,身份治理与管理)平台
人工智能·深度学习·算法·职场和发展
老马啸西风1 小时前
成熟企业级技术平台 MVE-010-app 管理平台
人工智能·深度学习·算法·职场和发展
●VON1 小时前
小V健身助手开发手记(四):打造专属健康空间——以 PersonContent构建统一风格的个人中心
人工智能·学习·openharmony·开源鸿蒙·von