Python和JAX及MATLAB小波分析导图

🎯要点

  1. 离散小波变换和逆离散小波变换
  2. 时间序列谱分析
  3. 计算比例图和频谱图显示数据
  4. 莫莱小波时频数据表征
  5. 海表温度异常的区域平均值
  6. 捕捉市场波动时间频率关联信息
  7. 信号和图像分解压缩重建
  8. 降维
  9. 分析金融波动
  10. 连续小波卷积网络和离散小波信号分类
  11. 图像处理、提取地震图速度和衰减参数
  12. 高质量无噪音时频分析

Python哈尔小波

在数学中,哈尔小波是一系列重新缩放的"方形"函数,它们共同构成小波族或基。小波分析类似于傅立叶分析,因为它允许用正交基来表示间隔内的目标函数。哈尔序列现在被认为是第一个已知的小波基,并被广泛用作教学示例。哈尔小波也是最简单的小波。哈尔小波的技术缺点是它不连续,因此不可微分。然而,这一特性对于分析具有突然转变的信号(离散信号)来说却是一个优势,例如监控机器中的工具故障。

哈尔小波的母小波函数 ψ ( t ) \psi(t) ψ(t)可以描述为
ψ ( t ) = { 1 0 ≤ t < 1 2 − 1 1 2 ≤ t < 1 0 否则 \psi(t)= \begin{cases}1 & 0 \leq t<\frac{1}{2} \\ -1 & \frac{1}{2} \leq t<1 \\ 0 & \text { 否则 }\end{cases} ψ(t)=⎩ ⎨ ⎧1−100≤t<2121≤t<1 否则

其尺度函数 φ ( t ) \varphi(t) φ(t)可描述为
φ ( t ) = { 1 0 ≤ t < 1 0 否则 \varphi(t)= \begin{cases}1 & 0 \leq t<1 \\ 0 & \text { 否则 }\end{cases} φ(t)={100≤t<1 否则

与哈尔小波相关的 2×2 哈尔矩阵为
H 2 = [ 1 1 1 − 1 ] H_2=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] H2=[111−1]

使用离散小波变换,可以将任意长度的偶数序列 ( a 0 , a 1 , ... , a 2 n , a 2 n + 1 ) \left(a_0, a_1, \ldots, a_{2 n}, a_{2 n+1}\right) (a0,a1,...,a2n,a2n+1) 变换为二元序列 -向量 ( ( a 0 , a 1 ) , ( a 2 , a 3 ) , ... , ( a 2 n , a 2 n + 1 ) ) \left(\left(a_0, a_1\right),\left(a_2, a_3\right), \ldots,\left(a_{2 n}, a_{2 n+1}\right)\right) ((a0,a1),(a2,a3),...,(a2n,a2n+1))。如果将每个向量与矩阵 H 2 H_2 H2 右乘,则得到结果 ( ( s 0 , d 0 ) , ... , ( s n , d n ) ) \left(\left(s_0, d_0\right), \ldots,\left(s_n, d_n\right)\right) ((s0,d0),...,(sn,dn)) 为快速哈尔小波变换的阶段。通常,我们将序列 s s s 和 d d d 分开,然后继续转换序列 s s s。序列 s s s 通常被称为平均值部分,而 d d d 被称为细节部分。

如果一个序列的长度是四的倍数,则可以构建 4 个元素的块,并使用 4×4 哈尔矩阵以类似的方式对其进行变换
H 4 = [ 1 1 1 1 1 1 − 1 − 1 1 − 1 0 0 0 0 1 − 1 ] H_4=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array}\right] H4= 111011−101−1011−10−1

它结合了快速哈尔小波变换的两个阶段。

一般来说,2N×2N 哈尔矩阵可以通过以下等式导出。
H 2 N = [ H N ⊗ [ 1 , 1 ] I N ⊗ [ 1 , − 1 ] ] H_{2 N}=\left[\begin{array}{c} H_N \otimes[1,1] \\ I_N \otimes[1,-1] \end{array}\right] H2N=[HN⊗[1,1]IN⊗[1,−1]]

其中 I N = [ 1 0 ... 0 0 1 ... 0 ⋮ ⋮ ⋱ ⋮ 0 0 ... 1 ] I_N=\left[\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right] IN= 10⋮001⋮0......⋱...00⋮1 和 ⊗ \otimes ⊗ 是克罗内克积。

Python示例

哈尔小波的特点是简单和二元阶跃函数。其结构有利于图像和信号处理、数值分析,甚至数据压缩领域。其主要优势在于能够提供有关特定函数或数据集的局部频率信息。我们将使用 TensorFlow演示一维离散哈尔小波变换。

shell 复制代码
pip install numpy
pip install tensorflow
python 复制代码
def haar1d_layer(x):
    outputs = []
    len = x.shape[1]

    while len > 1:
        v_reshape = tf.reshape(x, [-1, len//2, 2])
        v_diff = v_reshape[:,:,1:2] - v_reshape[:,:,0:1]
        v_diff = tf.reshape(v_diff, [-1, len//2])
        outputs.append(v_diff)
        x = tf.reduce_mean(v_reshape, axis=2)
        len = len // 2

    outputs.append(x)
    return tf.concat(outputs, 1)

def haar1d_inv_layer(x):
    idx = 1
    len = x.shape[1]
    while idx < len:
        v_avg = x[:, -idx:]
        v_avg = tf.reshape(v_avg, [-1, idx, 1])
        v_delta = x[:, (len - (idx << 1)):(len - idx)] / 2
        v_delta = tf.stack([-v_delta, v_delta], axis=2) 
        v_out = v_avg + v_delta
        v_out = tf.reshape(v_out, [-1, idx*2])
        x = tf.concat([x[:, :-(idx << 1)], v_out], axis=1)
        idx = idx << 1
    return x

haar1d_layer() 函数对输入向量中的元素对进行迭代,计算每对元素的平均值和差异,并将它们写入 output_vectorhaar1d_inv_layer() 函数执行相反的操作,从 input_vector 中获取平均值和差异对,并计算原始值,然后将它们写入 output_vector。函数 stack() 用于将 TensorArray 转换为 Tensor。

使用上述函数

pYTHON 复制代码
v = tf.Variable([
    [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],
    [16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
],dtype=tf.float32)


x = layers.Input(shape=(v.shape[1],))
y = haar1d_layer(x)
encoder = Model(x, y)
encoded = encoder.predict(v)
print(encoded)

y = haar1d_inv_layer(x)
decoder = Model(x, y)
decoded = decoder.predict(encoded)
print(decoded)

运行时,您将看到转换后的向量以及转换后向量的反转结果,该结果应与原始输入向量相同。

👉更新:亚图跨际