leetcode1514 最大概率路径(Bellman-ford算法详解)

题目描述:

You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.
题目链接

解题思路:

为了解决这个问题,我们需要在无向图中找到两个节点之间的路径,以最大化边概率的乘积。Bellman-Ford算法通常用于在具有负权重的图中找到最短路径,可以用来解决这个问题。我们将通过迭代更新起始点到达每个节点的最大概率来求最终的最大概率。
Bellman-Ford算法

代码实现:

java 复制代码
package practise;

public class leetcode1514 {
    public static void main(String[] args) {
        int[][] edges = {{2,3},{1,2},{3,4},{1,3},{1,4},{0,1},{2,4},{0,4},{0,2}};
        double[] succProb = {0.06,0.26,0.49,0.25,0.2,0.64,0.23,0.21,0.77};
        System.out.println(maxProbability(5, edges, succProb, 0, 3));
    }

    public static double maxProbability(int n, int[][] edges, double[] succProb, int start_node, int end_node) {
        double[] maxProb = new double[n]; //the pro from start_node to xxx
        maxProb[start_node] = 1.0;
        for (int i = 0; i < edges.length; i++) {
            boolean updated = false;
            for (int j = 0; j < edges.length; j++) {
                int from = edges[j][0], to = edges[j][1];
                double pathProb = succProb[j];
                if (maxProb[from] * pathProb > maxProb[to]) {
                    maxProb[to] = maxProb[from] * pathProb;
                    updated = true;
                }
                if (maxProb[to] * pathProb > maxProb[from]) {
                    maxProb[from] = maxProb[to] * pathProb;
                    updated = true;
                }
            }
            if(!updated) {
                break;
            }
        }
        return maxProb[end_node];
    }
}
相关推荐
wallflower20202 小时前
滑动窗口算法在前端开发中的探索与应用
前端·算法
林木辛2 小时前
LeetCode热题 42.接雨水
算法·leetcode
MicroTech20252 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
星梦清河2 小时前
宋红康 JVM 笔记 Day15|垃圾回收相关算法
jvm·笔记·算法
货拉拉技术2 小时前
揭秘语音交互的核心技术
算法
矛取矛求3 小时前
日期类的实现
开发语言·c++·算法
在下雨5993 小时前
项目讲解1
开发语言·数据结构·c++·算法·单例模式
Jayyih4 小时前
嵌入式系统学习Day36(简单的网页制作)
学习·算法
脑洞代码4 小时前
20250909的学习笔记
算法
Christo34 小时前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习