【CF补题&&数学&&裴蜀定理】 div969 C Dora and C++

Dora and C++


分析:

对于两个数x,y

我们想要通过如下操作使得他们的差变得尽可能小

我们要如何操作?

这个操作也就是相当于 d e l = ∣ y − x ∣ − k 1 ∗ x − k 2 ∗ y del=|y-x|-k_1*x-k_2*y del=∣y−x∣−k1∗x−k2∗y,让这个差值最小

对于 k 1 ∗ x + k 2 ∗ y k_1*x+k_2*y k1∗x+k2∗y这个操作

根据裴蜀定理,我们知道 k 1 x + k 2 y = k ∗ g c d ( x , y ) k_1x+k_2y=k*gcd(x,y) k1x+k2y=k∗gcd(x,y)

也就是说通过这个操作得到的数,一定是 g c d ( x , y ) gcd(x,y) gcd(x,y)的倍数

那么, M i n ( d e l ) = ∣ y − x ∣ % g c d Min(del)=|y-x|\%gcd Min(del)=∣y−x∣%gcd

我们对上式的 x , y x,y x,y用另一种形式表示:
x = X + k x g c d x=X+k_xgcd x=X+kxgcd
y = Y + k y g c d y=Y+k_ygcd y=Y+kygcd
∣ y − x ∣ = ∣ Y − X + ( k y − k x ) g c d ∣ |y-x|=|Y-X+(k_y-k_x)gcd| ∣y−x∣=∣Y−X+(ky−kx)gcd∣

经过 m o d mod mod意义之后,其实 ∣ y − x ∣ m i n = ∣ Y − X ∣ |y-x|_{min}=|Y-X| ∣y−x∣min=∣Y−X∣

其实就是说,x和y在这个条件下可以等价于 x % g c d 以及 y % g c d x\%gcd以及y\%gcd x%gcd以及y%gcd

他们的差值最小值也就是取模意义之后两数的差的绝对值

那么对于这道题而言,最小的差值就是每个数 M o d g c d Mod\ gcd Mod gcd意义下的极差。

但是其实并不完全。

比如取模意义后两个数变成0和2,而gcd=3

实际上可以让0+3,再和2去做差

这个其实就类似于一个环形的问题

跨越之后可能让差值更小


cpp 复制代码
#include<bits/stdc++.h>
using namespace std;

#define int long long

const int N = 2e5+100;
int n,x,y;
int a[N];

int gcd(int x,int y){
	return y == 0?x:gcd(y,x%y);
}

void Work(){
	cin>>n>>x>>y;
	int g = gcd(x,y);
	for (int i = 1; i <= n; i++) cin>>a[i],a[i]%=g;
	sort(a+1,a+n+1);
	for (int i = n+1; i <= 2*n; i++) a[i] = a[i-n]+g;
	int Min = 1e9+7;
	for (int i = 1; i <= n+1; i++)
	  Min = min(Min,a[i+n-1]-a[i]);
	cout<<Min<<endl;
	return;
}

signed main(){
	int t; cin>>t;
	while (t--) Work();
	return 0;
}
相关推荐
有杨既安然1 小时前
Python自动化办公
开发语言·人工智能·深度学习·机器学习
虾球xz1 小时前
游戏引擎学习第221天:(实现多层次过场动画)
c++·学习·游戏引擎
King.6242 小时前
从 SQL2API 到 Text2API:开启数据应用开发的新征程
大数据·开发语言·数据库·sql·低代码
奇谱2 小时前
Quipus,LightRag的Go版本的实现
开发语言·后端·语言模型·golang·知识图谱
wuqingshun3141593 小时前
蓝桥杯 9. 九宫幻方
数据结构·c++·算法·职场和发展·蓝桥杯·深度优先
小小菜鸟,可笑可笑3 小时前
Python 注释进阶之Google风格
开发语言·python
yasuniko3 小时前
C复习(主要复习)
c语言·数据结构·算法
哲科软件3 小时前
2025年C#人力外包趋势与价值分析
开发语言·c#
云格~3 小时前
L1-5 吉老师的回归
开发语言·c++·人工智能·算法·职场和发展·数据挖掘·回归
我真的不会C3 小时前
Qt中widget控件的常见属性
java·开发语言·qt