第L5周:机器学习:决策树(分类模型)

目标

  1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。

    1. 通过通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

具体实现
(一)环境
语言环境 :Python 3.10
编 译 器: PyCharm

**(二)具体步骤:

  1. 导入数据:

    导入数据

    url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
    names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']

    dataset = pd.read_csv(url, names=names)
    print(dataset)

  1. 数据划分:

    数据划分

    X = dataset.iloc[:, [0, 1, 2, 3]].values # 数据集第1-4列为X
    Y = dataset.iloc[:, 4].values # 数据集第5列为Y

  2. 模型训练:

    from sklearn import tree

    clf = tree.DecisionTreeClassifier() # 决策树模型
    clf = clf.fit(X, Y) # 用数据训练决策树模型
    r = tree.export_text(clf)
    print("训练后的模型:", r)

  1. 用训练后的模型来预测一下结果:

    用训练后的模型来预测一下结果

    test_data = X[[0, 1, 50, 51, 100, 101, 102, 103], :] # 抽出数据集中指定第0、1、50...103行的所有数据
    print("测试数据如下:\n", test_data)
    pred_target_prob = clf.predict_proba(test_data) # 预测类别的概率
    print("预测类别的概率如下:\n", pred_target_prob)
    pred_target = clf.predict(test_data) # 预测类别
    print("预测的类别如下:\n", pred_target)

相关推荐
beot学AI1 小时前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
西猫雷婶2 小时前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论
2401_858869802 小时前
支持向量机
算法·机器学习·支持向量机
小王爱学人工智能3 小时前
迁移学习的案例
人工智能·机器学习·迁移学习
Honeysea_703 小时前
容器的定义及工作原理
人工智能·深度学习·机器学习·docker·ai·持续部署
一只鱼丸yo3 小时前
70B大模型也能在笔记本上跑?揭秘让AI“瘦身”的黑科技
人工智能·科技·机器学习·语言模型
hallo1286 小时前
学习机器学习能看哪些书籍
人工智能·深度学习·机器学习
中國龍在廣州6 小时前
哈工大提出空间机器人复合框架,突破高精度轨迹跟踪
人工智能·深度学习·机器学习·计算机视觉·机器人
石氏是时试6 小时前
拉格朗日多项式
人工智能·算法·机器学习
非门由也7 小时前
《sklearn机器学习——聚类性能指数》同质性,完整性和 V-measure
机器学习·聚类·sklearn