第L5周:机器学习:决策树(分类模型)

目标

  1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。

    1. 通过通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

具体实现
(一)环境
语言环境 :Python 3.10
编 译 器: PyCharm

**(二)具体步骤:

  1. 导入数据:

    导入数据

    url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
    names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']

    dataset = pd.read_csv(url, names=names)
    print(dataset)

  1. 数据划分:

    数据划分

    X = dataset.iloc[:, [0, 1, 2, 3]].values # 数据集第1-4列为X
    Y = dataset.iloc[:, 4].values # 数据集第5列为Y

  2. 模型训练:

    from sklearn import tree

    clf = tree.DecisionTreeClassifier() # 决策树模型
    clf = clf.fit(X, Y) # 用数据训练决策树模型
    r = tree.export_text(clf)
    print("训练后的模型:", r)

  1. 用训练后的模型来预测一下结果:

    用训练后的模型来预测一下结果

    test_data = X[[0, 1, 50, 51, 100, 101, 102, 103], :] # 抽出数据集中指定第0、1、50...103行的所有数据
    print("测试数据如下:\n", test_data)
    pred_target_prob = clf.predict_proba(test_data) # 预测类别的概率
    print("预测类别的概率如下:\n", pred_target_prob)
    pred_target = clf.predict(test_data) # 预测类别
    print("预测的类别如下:\n", pred_target)

相关推荐
这张生成的图像能检测吗2 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
core5125 小时前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
ney187819024746 小时前
分类网络LeNet + FashionMNIST 准确率92.9%
python·深度学习·分类
JoannaJuanCV6 小时前
自动驾驶—CARLA 仿真(1)安装与demo测试
人工智能·机器学习·自动驾驶·carla
喏喏心8 小时前
深度强化学习:价值迭代与Bellman方程实践
人工智能·python·学习·机器学习
l木本I8 小时前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
TracyCoder1239 小时前
机器学习与深度学习基础(五):深度神经网络经典架构简介
深度学习·机器学习·dnn
宁大小白9 小时前
pythonstudy Day31
python·机器学习
xiaoxiaoxiaolll9 小时前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
KKKlucifer9 小时前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类