第L5周:机器学习:决策树(分类模型)

目标

  1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。

    1. 通过通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

具体实现
(一)环境
语言环境 :Python 3.10
编 译 器: PyCharm

**(二)具体步骤:

  1. 导入数据:

    导入数据

    url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
    names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']

    dataset = pd.read_csv(url, names=names)
    print(dataset)

  1. 数据划分:

    数据划分

    X = dataset.iloc[:, [0, 1, 2, 3]].values # 数据集第1-4列为X
    Y = dataset.iloc[:, 4].values # 数据集第5列为Y

  2. 模型训练:

    from sklearn import tree

    clf = tree.DecisionTreeClassifier() # 决策树模型
    clf = clf.fit(X, Y) # 用数据训练决策树模型
    r = tree.export_text(clf)
    print("训练后的模型:", r)

  1. 用训练后的模型来预测一下结果:

    用训练后的模型来预测一下结果

    test_data = X[[0, 1, 50, 51, 100, 101, 102, 103], :] # 抽出数据集中指定第0、1、50...103行的所有数据
    print("测试数据如下:\n", test_data)
    pred_target_prob = clf.predict_proba(test_data) # 预测类别的概率
    print("预测类别的概率如下:\n", pred_target_prob)
    pred_target = clf.predict(test_data) # 预测类别
    print("预测的类别如下:\n", pred_target)

相关推荐
Katecat996636 小时前
YOLOv8-Seg改进系列真空喷嘴质量检测与分类任务实现
yolo·分类·数据挖掘
Chef_Chen7 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
JOBkiller1238 小时前
基于YOLOv8-Seg-RepHGNetV2的银耳缺陷检测与分类实现
yolo·分类·数据挖掘
Master_oid10 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
ballball~~10 小时前
拉普拉斯金字塔
算法·机器学习
Cemtery11610 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
weixin_4469340312 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
2501_9413331013 小时前
YOLOv11改进版_CAA_HSFPN网络_六种手势检测与分类_1
yolo·分类·数据挖掘
wubba lubba dub dub75013 小时前
第三十三周 学习周报
学习·算法·机器学习
猫天意14 小时前
【深度学习小课堂】| torch | 升维打击还是原位拼接?深度解码 PyTorch 中 stack 与 cat 的几何奥义
开发语言·人工智能·pytorch·深度学习·神经网络·yolo·机器学习