第L5周:机器学习:决策树(分类模型)

目标

  1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。

    1. 通过通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

具体实现
(一)环境
语言环境 :Python 3.10
编 译 器: PyCharm

**(二)具体步骤:

  1. 导入数据:

    导入数据

    url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
    names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']

    dataset = pd.read_csv(url, names=names)
    print(dataset)

  1. 数据划分:

    数据划分

    X = dataset.iloc[:, [0, 1, 2, 3]].values # 数据集第1-4列为X
    Y = dataset.iloc[:, 4].values # 数据集第5列为Y

  2. 模型训练:

    from sklearn import tree

    clf = tree.DecisionTreeClassifier() # 决策树模型
    clf = clf.fit(X, Y) # 用数据训练决策树模型
    r = tree.export_text(clf)
    print("训练后的模型:", r)

  1. 用训练后的模型来预测一下结果:

    用训练后的模型来预测一下结果

    test_data = X[[0, 1, 50, 51, 100, 101, 102, 103], :] # 抽出数据集中指定第0、1、50...103行的所有数据
    print("测试数据如下:\n", test_data)
    pred_target_prob = clf.predict_proba(test_data) # 预测类别的概率
    print("预测类别的概率如下:\n", pred_target_prob)
    pred_target = clf.predict(test_data) # 预测类别
    print("预测的类别如下:\n", pred_target)

相关推荐
~~李木子~~20 分钟前
聚类算法实战:从 KMeans 到 DBSCAN
人工智能·机器学习·支持向量机
智能化咨询23 分钟前
超越图像:机器学习之生成对抗网络(GAN)在时序数据增强与异常检测中的深度实践
机器学习
落羽的落羽1 小时前
【Linux系统】从零掌握make与Makefile:高效自动化构建项目的工具
linux·服务器·开发语言·c++·人工智能·机器学习·1024程序员节
Cathy Bryant2 小时前
线性代数直觉(四):找到特征向量
笔记·神经网络·考研·机器学习·数学建模
jerryinwuhan2 小时前
TableTime:将时序分类重构为表格理解任务,更有效对齐LLM语义空间
重构·分类·数据挖掘
郝学胜-神的一滴3 小时前
主成分分析(PCA)在计算机图形学中的深入解析与应用
开发语言·人工智能·算法·机器学习·1024程序员节
数据科学作家4 小时前
如何入门python机器学习?金融从业人员如何快速学习Python、机器学习?机器学习、数据科学如何进阶成为大神?
大数据·开发语言·人工智能·python·机器学习·数据分析·统计分析
2401_841495646 小时前
【机器学习】k近邻法
人工智能·python·机器学习·分类··knn·k近邻算法
lisw056 小时前
对遗传学进行机器学习的现状与展望!
大数据·人工智能·机器学习
koo36413 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习